ETH Price: $2,505.01 (+0.23%)
 

Overview

ETH Balance

0.0002 ETH

Eth Value

$0.50 (@ $2,505.01/ETH)

Token Holdings

More Info

Private Name Tags

Multichain Info

1 address found via
Transaction Hash
Method
Block
From
To
Transfer226469582025-06-06 17:12:4743 hrs ago1749229967IN
OKX: EIP-7702 Delegator
0 ETH0.000090734.30937145
Transfer226469352025-06-06 17:08:1143 hrs ago1749229691IN
OKX: EIP-7702 Delegator
0 ETH0.00009674.59276966
Transfer226136272025-06-02 1:09:356 days ago1748826575IN
OKX: EIP-7702 Delegator
0.0002 ETH0.000028471.35255555
Initialize225240322025-05-20 12:08:3519 days ago1747742915IN
OKX: EIP-7702 Delegator
0 ETH0.000061152.37267937
Initialize224572162025-05-11 2:45:4728 days ago1746931547IN
OKX: EIP-7702 Delegator
0 ETH0.000103094
Initialize224293822025-05-07 4:21:2332 days ago1746591683IN
OKX: EIP-7702 Delegator
0 ETH0.000026890.36023579

Latest 2 internal transactions

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x61004d3d224293822025-05-07 4:21:2332 days ago1746591683
OKX: EIP-7702 Delegator
 Contract Creation0 ETH
0x6101a060224146112025-05-05 2:38:4734 days ago1746412727  Contract Creation0 ETH

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
WalletCore

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 2000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.23;

import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";

import {IWalletCore} from "./interfaces/IWalletCore.sol";
import {IStorage} from "./interfaces/IStorage.sol";

import {WalletCoreBase} from "./base/WalletCoreBase.sol";
import {ECDSA, WalletCoreLib} from "./lib/WalletCoreLib.sol";
import {ValidationLogic} from "./ValidationLogic.sol";
import {ExecutionLogic} from "./ExecutionLogic.sol";
import {ExecutorLogic} from "./ExecutorLogic.sol";
import {FallbackHandler} from "./FallbackHandler.sol";
import {Call, Session} from "./Types.sol";
import {Errors} from "./lib/Errors.sol";

// Do not set any states in this contract
contract WalletCore is
    IWalletCore,
    ValidationLogic,
    ExecutionLogic,
    ExecutorLogic,
    FallbackHandler,
    EIP712
{
    using Clones for address;

    // EIP-1271
    bytes4 private constant MAGIC_VALUE = 0x1626ba7e;
    bytes4 private constant INVALID_VALUE = 0xffffffff;

    address public immutable ADDRESS_THIS;
    address public immutable MAIN_STORAGE_IMPL;

    constructor(
        address mainStorageImpl,
        string memory name,
        string memory version
    ) EIP712(name, version) {
        // Check name/version lengths, assure remain stateless
        if (bytes(name).length >= 32) {
            revert Errors.NameTooLong();
        }
        if (bytes(version).length >= 32) {
            revert Errors.VersionTooLong();
        }
        ADDRESS_THIS = address(this);
        MAIN_STORAGE_IMPL = mainStorageImpl;
    }

    /**
     * @dev Modifier to make a function callable by the account itself or EOA address under 7702
     */
    modifier onlySelf() {
        if (msg.sender != address(this)) revert Errors.NotFromSelf();
        _;
    }

    /**
     * @notice Initializes the wallet core
     * @dev Can only be called once during account creation with each storage version
     */
    function initialize() external {
        if (WalletCoreLib._getStorage(MAIN_STORAGE_IMPL).code.length != 0) {
            emit StorageInitialized();
            return;
        }

        // immutable args
        bytes memory owner = abi.encode(address(this));

        address createdAddress = MAIN_STORAGE_IMPL
            .cloneDeterministicWithImmutableArgs(
                owner,
                WalletCoreLib.STORAGE_SALT
            );

        emit StorageCreated(createdAddress);
    }

    /**
     * @notice Executes multiple contract calls in a single transaction
     * @dev Only callable by the account itself
     * @param calls Array of Call structs containing destination address, value, and calldata
     */
    function executeFromSelf(Call[] calldata calls) external onlySelf {
        _batchCall(calls);
    }

    /**
     * @notice Executes a batch of calls after validation by a designated validator contract
     * @dev The validator must be previously registered and the validation data must be valid
     * @dev If validator address == 1, uses default built-in ECDSA ecrecover for signature verification
     * @param calls Array of Call structs to be executed, each containing destination address, value, and calldata
     * @param validator Address of the validator contract that will verify this transaction (use address(1) for ECDSA)
     * @param validationData Encoded data required by the validator for transaction verification. For ECDSA, this is the signature
     */
    function executeWithValidator(
        Call[] calldata calls,
        address validator,
        bytes calldata validationData
    ) external onlyValidator(calls, validator, validationData) {
        _batchCall(calls);
    }

    /**
     * @notice Executes a batch of calls through a registered executor using a valid session
     * @dev Only callable by pre-signed sessions with valid signatures
     * @dev Executes hooks before and after the batch call if specified in the session
     * @param calls Array of Call structs to be executed, each containing destination address, value, and calldata
     * @param session Session struct containing executor details, permissions, and hook configurations
     */
    function executeFromExecutor(
        Call[] calldata calls,
        Session calldata session
    ) external onlyValidSession(session, calls) {
        _batchCall(calls);
    }

    /**
     * @notice Registers a new validator contract for transaction validation
     * @dev Only callable by the wallet itself
     * @param validatorImpl The implementation address of the validator contract to be registered
     * @param immutableArgs Initialization data for the validator contract (can be empty)
     */
    function addValidator(
        address validatorImpl,
        bytes calldata immutableArgs
    ) external onlySelf {
        _addValidator(validatorImpl, immutableArgs);
    }

    /**
     * @notice Implements EIP-1271 signature validation standard
     * @dev There are two types of signatures:
     *      1. 65 bytes: ECDSA signature
     *      2. >20 bytes: (validator, signature) pair
     * @param _hash The hash of the data to be validated
     * @param signature The signature to be validated
     * @return bytes4 Returns MAGIC_VALUE (0x1626ba7e) if valid, INVALID_VALUE (0xffffffff) if invalid
     */
    function isValidSignature(
        bytes32 _hash,
        bytes calldata signature
    ) external view returns (bytes4) {
        // 7702 Post upgrade compatibility: try validate signature for EOA sigs
        // Make sure the _signature can be decoded
        if (signature.length == 65) {
            (address recovered, , ) = ECDSA.tryRecover(_hash, signature);
            if (recovered == address(this)) return MAGIC_VALUE;
        }

        if (signature.length < 20) return INVALID_VALUE;

        return
            isValidSignature(
                address(bytes20(signature[:20])),
                _hash,
                signature[20:]
            )
                ? MAGIC_VALUE
                : INVALID_VALUE;
    }

    /**
     * @notice Returns the address of the wallet's storage contract
     * @dev Uses deterministic deployment to calculate the storage contract address.
     *      This contract only stores core wallet states. For additional states,
     *      create and query new dedicated storage contracts instead of modifying
     *      this one.
     * @return address The deployed storage contract address for this wallet
     * @custom:architecture New features requiring additional storage should:
     *      1. Deploy a new dedicated storage contract
     *      2. Implement separate getter methods for the new storage
     */
    function getMainStorage()
        public
        view
        override(IWalletCore, WalletCoreBase)
        returns (IStorage)
    {
        return IStorage(WalletCoreLib._getStorage(MAIN_STORAGE_IMPL));
    }

    /**
     * @notice Creates a typed data hash following EIP-712 standard
     * @param structHash The hash of the struct data to be signed
     * @return The final EIP-712 typed data hash that can be signed by a wallet
     */
    function _hashTypedDataV4(
        bytes32 structHash
    ) internal view override(EIP712, WalletCoreBase) returns (bytes32) {
        return EIP712._hashTypedDataV4(structHash);
    }

    /**
     * @notice Returns the address of the current wallet implementation
     * @dev This function is used in the proxy pattern to identify the implementation contract
     * @return ADDRESS_THIS The address of this contract, which serves as the implementation
     */
    function _walletImplementation() internal view override returns (address) {
        return ADDRESS_THIS;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
     * at the same address.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 32), 45, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 24531) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 45),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {IStorage} from "./IStorage.sol";
import {Call, Session} from "src/Types.sol";

interface IWalletCore is IERC165 {
    // EVENTS
    event StorageInitialized();
    event StorageCreated(address storageAddress);

    function initialize() external;

    function executeFromSelf(Call[] calldata calls) external;

    function executeWithValidator(
        Call[] calldata calls,
        address validator,
        bytes calldata validationData
    ) external;

    function executeFromExecutor(
        Call[] calldata calls,
        Session calldata session
    ) external;

    function addValidator(
        address validatorImpl,
        bytes calldata immutableArgs
    ) external;

    function getMainStorage() external view returns (IStorage);

    function isValidSignature(
        bytes32 hash,
        bytes calldata signature
    ) external view returns (bytes4);
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

interface IStorage {
    // EVENTS
    event NonceConsumed(uint256 utilisedNonce);
    event ValidatorStatusUpdated(address validator, bool status);
    event SessionRevoked(uint256 id);

    // FUNCTIONS
    function readAndUpdateNonce(address validator) external returns (uint256);

    function setValidatorStatus(address validator, bool isValid) external;

    function revokeSession(uint256 id) external;

    function getOwner() external view returns (address);

    function getNonce() external view returns (uint256);

    function validateValidator(address validator) external view;

    function validateSession(uint256 id, address validator) external view;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {IStorage} from "../interfaces/IStorage.sol";

abstract contract WalletCoreBase {
    function _hashTypedDataV4(
        bytes32 structHash
    ) internal view virtual returns (bytes32);

    function _walletImplementation() internal view virtual returns (address);

    function getMainStorage() public view virtual returns (IStorage);
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

import {IValidator} from "../interfaces/IValidator.sol";

library WalletCoreLib {
    using ECDSA for bytes32;
    using Clones for address;
    /**
     * @notice new storage should have a different salt
     */
    bytes32 public constant STORAGE_SALT =
        keccak256(abi.encodePacked("storage"));

    bytes32 public constant VALIDATOR_SALT =
        keccak256(abi.encodePacked("validator"));

    address public constant SELF_VALIDATION_ADDRESS = address(1);

    /**
     * @notice Computes the deterministic address of the wallet's storage contract
     * @dev Uses OpenZeppelin's Clones library to predict the address before deployment
     * @param storageImpl The implementation address of the storage contract
     * @return address The deterministic address where the storage clone will be deployed
     * @custom:args The immutable arguments encoded are:
     *  - address(this): The wallet address that owns this storage
     * @custom:salt A unique salt derived from STORAGE_SALT
     */
    function _getStorage(address storageImpl) internal view returns (address) {
        return
            storageImpl.predictDeterministicAddressWithImmutableArgs(
                abi.encode(address(this)),
                STORAGE_SALT,
                address(this)
            );
    }

    /**
     * @notice Validates a transaction or operation using either ECDSA signatures or an external validator contract
     * @dev Two validation methods are supported:
     *      1. ECDSA validation (when validator == address(1)): Recovers signer from signature and verifies it matches the wallet address
     *      2. External validator (any other address): Calls the validator contract and checks if it's authorized to validate
     * @param validator Address of the validator to use (address(1) for ECDSA signature validation)
     * @param typedDataHash EIP-712 typed data hash of the data to be validated
     * @param validationData For ECDSA: the 65-byte signature; For external validators: custom validation data
     * @return bool True if validation succeeds, false otherwise
     * @custom:security Ensure validator contracts are properly verified and authorized before use
     */
    function validate(
        address validator,
        bytes32 typedDataHash,
        bytes calldata validationData
    ) internal view returns (bool) {
        if (validator == SELF_VALIDATION_ADDRESS) {
            return _validateSelf(typedDataHash, validationData);
        } else {
            try IValidator(validator).validate(typedDataHash, validationData) {
                return true;
            } catch {
                return false;
            }
        }
    }

    /**
     * @notice Validates that a signature was signed by this contract
     * @param typedDataHash The hash of the data that was signed
     * @param signature The ECDSA signature to verify
     * @return bool True if the validation passes, false otherwise
     * @dev Reverts with INVALID_SIGNATURE if the signer is not account itself
     */
    function _validateSelf(
        bytes32 typedDataHash,
        bytes calldata signature
    ) internal view returns (bool) {
        (address recoveredSigner, , ) = typedDataHash.tryRecover(signature);
        return recoveredSigner == address(this);
    }

    /**
     * @notice Creates a unique deployment salt by combining validator implementation and init code
     * @param validatorImpl The validator implementation address
     * @param initHash Hash of the validator's initialization code
     * @return bytes32 The computed salt for deterministic deployment
     */
    function _computeCreationSalt(
        address validatorImpl,
        bytes32 initHash
    ) internal pure returns (bytes32) {
        return keccak256(abi.encode(validatorImpl, initHash));
    }

    /**
     * @notice Computes the deterministic address of a validator contract before deployment
     * @param validatorImpl The implementation address of the validator
     * @param immutableArgs The initialization data for the validator
     * @param creationSalt A unique salt for deterministic deployment
     * @param deployer The address that will deploy the validator
     * @return The predicted address where the validator will be deployed
     */
    function _computeValidatorAddress(
        address validatorImpl,
        bytes calldata immutableArgs,
        bytes32 creationSalt,
        address deployer
    ) internal pure returns (address) {
        return
            validatorImpl.predictDeterministicAddressWithImmutableArgs(
                immutableArgs,
                creationSalt,
                deployer
            );
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.23;

import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";

import {IValidation} from "./interfaces/IValidation.sol";
import {IStorage} from "./interfaces/IStorage.sol";

import {WalletCoreBase} from "./base/WalletCoreBase.sol";
import {WalletCoreLib} from "./lib/WalletCoreLib.sol";
import {Call} from "./Types.sol";
import {Errors} from "./lib/Errors.sol";

abstract contract ValidationLogic is IValidation, WalletCoreBase {
    using Clones for address;

    bytes32 private constant CALLS_TYPEHASH =
        keccak256("Calls(address wallet,uint256 nonce,bytes32[] calls)");
    bytes32 private constant CALL_TYPEHASH =
        keccak256("Call(address target,uint256 value,bytes data)");

    /**
     * @notice Modifier that validates a transaction using the specified validator
     * @dev Reads and updates the nonce from storage before validation
     * @param calls Array of calls to be validated
     * @param validator Address of the validator contract
     * @param validationData The validation data (signature for ECDSA, custom data for other validators)
     */
    modifier onlyValidator(
        Call[] calldata calls,
        address validator,
        bytes calldata validationData
    ) {
        uint256 nonce = getMainStorage().readAndUpdateNonce(validator);
        _validateCall(nonce, calls, validator, validationData);
        _;
    }

    /**
     * @notice Adds a new validator contract to the wallet
     * @param validatorImpl The implementation address of the validator contract to be registered
     * @param immutableArgs Initialization data for the validator contract
     */
    function _addValidator(
        address validatorImpl,
        bytes calldata immutableArgs
    ) internal {
        if (validatorImpl.code.length == 0)
            revert Errors.InvalidValidatorImpl(validatorImpl);

        // Fix creation salt
        bytes32 salt = WalletCoreLib.VALIDATOR_SALT;

        // Deploy using deterministic address
        address createdAddress = validatorImpl
            .cloneDeterministicWithImmutableArgs(immutableArgs, salt);

        getMainStorage().setValidatorStatus(createdAddress, true);

        // Initialize the validator
        emit ValidatorAdded(createdAddress);
    }

    /**
     * @notice Implements EIP-1271 signature validation standard
     * @dev Validates signatures by checking both the validator's signature and its authenticity
     * @dev The signature is bound to this wallet's address and the current chain ID
     * @param validator The address of the validator contract
     * @param _hash The hash of the data to be validated
     * @param signature ABI encoded (validator, signature) pair where:
     *        - validator: address of the validator contract
     *        - signature: the actual signature or validation data
     * @return bytes4 Returns MAGIC_VALUE (0x1626ba7e) if valid, INVALID_VALUE (0xffffffff) if invalid
     * @custom:security Verifies the validator is legitimate by checking its deterministic deployment
     */
    function isValidSignature(
        address validator,
        bytes32 _hash,
        bytes calldata signature
    ) internal view returns (bool) {
        try getMainStorage().validateValidator(validator) {} catch {
            return false;
        }

        bytes32 boundHash = keccak256(
            abi.encode(bytes32(block.chainid), address(this), _hash)
        );
        bytes32 digest = keccak256(abi.encodePacked("\x19\x01", boundHash));

        return WalletCoreLib.validate(validator, digest, signature);
    }

    /**
     * @notice Generates an EIP-712 compliant typed data hash for transaction validation
     * @dev Combines the message hash with the domain separator using EIP-712 standard
     * @param nonce Current transaction nonce used to prevent replay attacks
     * @param calls Array of calls to be validated
     * @return bytes32 The EIP-712 typed data hash ready for signing
     */
    function getValidationTypedHash(
        uint256 nonce,
        Call[] calldata calls
    ) public view returns (bytes32) {
        return _hashTypedDataV4(_getValidationHash(nonce, calls));
    }

    /**
     * @notice Computes the deterministic address of a validator
     * @dev Uses the validator implementation and signer to calculate the expected address
     * @param validatorImpl The implementation contract address for the validator
     * @param immutableArgs The initialization code of the validator
     * @return address The predicted validator contract address
     */
    function computeValidatorAddress(
        address validatorImpl,
        bytes calldata immutableArgs
    ) public view returns (address) {
        return
            WalletCoreLib._computeValidatorAddress(
                validatorImpl,
                immutableArgs,
                WalletCoreLib.VALIDATOR_SALT,
                address(this)
            );
    }

    /**
     * @notice Internal function to validate a transaction using EIP-712 typed data
     * @dev Generates typed data hash and validates it using the specified validator
     * @param nonce Current transaction nonce from storage
     * @param calls Array of calls to be validated
     * @param validator Address of the validator contract
     * @param validationData The validation data (signature for ECDSA, custom data for other validators)
     */
    function _validateCall(
        uint256 nonce,
        Call[] calldata calls,
        address validator,
        bytes calldata validationData
    ) internal view {
        bytes32 typedDataHash = getValidationTypedHash(nonce, calls);
        bool isValid = WalletCoreLib.validate(
            validator,
            typedDataHash,
            validationData
        );
        if (!isValid) revert Errors.InvalidSignature();
    }

    /**
     * @notice Creates a hash of the transaction data for validation
     * @dev Combines nonce and calls into a single hash using EIP-712 encoding
     * @param nonce Transaction nonce for replay protection
     * @param calls Array of calls to execute
     * @return bytes32 Hash of the transaction data
     */
    function _getValidationHash(
        uint256 nonce,
        Call[] calldata calls
    ) internal view returns (bytes32) {
        bytes32[] memory callHashes = new bytes32[](calls.length);
        for (uint256 i = 0; i < calls.length; i++) {
            callHashes[i] = keccak256(
                abi.encode(
                    CALL_TYPEHASH,
                    calls[i].target,
                    calls[i].value,
                    keccak256(calls[i].data)
                )
            );
        }

        return
            keccak256(
                abi.encode(
                    CALLS_TYPEHASH,
                    _walletImplementation(),
                    nonce,
                    keccak256(abi.encode(callHashes))
                )
            );
    }
}

File 9 of 30 : ExecutionLogic.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.23;

import {Call} from "./Types.sol";
import {Errors} from "./lib/Errors.sol";

abstract contract ExecutionLogic {
    /**
     * @notice Executes multiple contract calls in a single transaction
     * @dev Reverts if any of the calls fail
     * @param calls Array of Call structs containing destination address, value, and calldata
     * @return results Array of bytes containing the return data from each call
     */
    function _batchCall(
        Call[] calldata calls
    ) internal returns (bytes[] memory results) {
        results = new bytes[](calls.length);
        for (uint256 i; i < calls.length; i++) {
            (bool success, bytes memory returnData) = calls[i].target.call{
                value: calls[i].value
            }(calls[i].data);
            if (!success) revert Errors.CallFailed(i, returnData);
            results[i] = returnData;
        }
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.23;

import {IExecutor} from "./interfaces/IExecutor.sol";
import {IHook} from "./interfaces/IHook.sol";
import {IStorage} from "./interfaces/IStorage.sol";

import {WalletCoreBase} from "./base/WalletCoreBase.sol";
import {WalletCoreLib} from "./lib/WalletCoreLib.sol";
import {Call, Session} from "./Types.sol";
import {Errors} from "./lib/Errors.sol";

abstract contract ExecutorLogic is IExecutor, WalletCoreBase {
    bytes32 public constant SESSION_TYPEHASH =
        keccak256(
            "Session(address wallet,uint256 id,address executor,address validator,uint256 validUntil,uint256 validAfter,bytes preHook,bytes postHook)"
        );

    /**
     * @notice Restricts function access to the authorized executor with a valid session and executes hooks
     * @dev Performs two checks:
     *      1. Caller must match the session's executor
     *      2. Session must be valid (not expired, not invalidated)
     * @dev Hook address is extracted from first 20 bytes of hook data
     * @dev Remaining bytes are passed as hook parameters
     * @param session The session data containing executor permissions and hook configurations
     * @param calls Array of calls to be executed
     * @custom:hooks PreHook runs before execution, PostHook runs after with preHook return data
     */
    modifier onlyValidSession(Session calldata session, Call[] calldata calls) {
        validateSession(session);

        bytes memory ret;

        if (session.preHook.length >= 20)
            ret = IHook(address(bytes20(session.preHook[:20]))).preCheck(
                calls,
                session.preHook[20:],
                msg.sender
            );

        _;

        if (session.postHook.length >= 20)
            IHook(address(bytes20(session.postHook[:20]))).postCheck(
                ret,
                session.postHook[20:],
                msg.sender
            );
    }

    /**
     * @notice Validates a session's time bounds, status, and signature
     * @dev Checks three conditions:
     *      1. Current time is within session's time bounds
     *      2. Session is not invalidated in storage
     *      3. Session signature is valid using specified validator
     * @param session The session data to validate
     */
    function validateSession(Session calldata session) public view {
        // Check executor authorization
        if (msg.sender != session.executor) revert Errors.InvalidExecutor();

        // Check time bounds
        if (
            session.validAfter > block.timestamp ||
            block.timestamp > session.validUntil
        ) revert Errors.InvalidSession();

        // Check invalidSessionId & validValidator in storage
        getMainStorage().validateSession(session.id, session.validator);

        // Validate signature
        bytes32 hash = getSessionTypedHash(session);
        bool isValid = WalletCoreLib.validate(
            session.validator,
            hash,
            session.signature
        );
        if (!isValid) revert Errors.InvalidSignature();
    }

    /**
     * @notice Creates an EIP-712 typed data hash for session validation
     * @dev Combines session data with domain separator using EIP-712 standard
     * @param session The session data containing ID, executor, validator, time bounds, and hooks
     * @return bytes32 The EIP-712 compliant hash for signature verification
     */
    function getSessionTypedHash(
        Session calldata session
    ) public view returns (bytes32) {
        return _hashTypedDataV4(_getSessionHash(session));
    }

    /**
     * @notice Creates a hash of session parameters for EIP-712 struct hashing
     * @dev Packs session data with SESSION_TYPEHASH using keccak256
     * @param session Session data
     * @return bytes32 The packed and hashed session data
     */
    function _getSessionHash(
        Session calldata session
    ) internal view returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    SESSION_TYPEHASH,
                    _walletImplementation(),
                    session.id,
                    session.executor,
                    session.validator,
                    session.validUntil,
                    session.validAfter,
                    keccak256(session.preHook),
                    keccak256(session.postHook)
                )
            );
    }
}

File 11 of 30 : FallbackHandler.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.23;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";

/**
 * @dev Contract that handles token receiving functionality, implementing both IERC165 and IModule interfaces.
 * Supports ERC721 and ERC1155 token receiving through standard interfaces.
 */
abstract contract FallbackHandler is IERC165 {
    /**
     * @dev Allows the contract to receive ETH
     */
    receive() external payable virtual {}

    /**
     * @dev Fallback function that handles token receiving callbacks
     * Returns the function selector for ERC721 and ERC1155 token receiving functions
     */
    fallback() external payable {
        assembly {
            let s := shr(224, calldataload(0))
            // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
            // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
            // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
            if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                mstore(0x20, s) // Store `msg.sig`.
                return(0x3c, 0x20) // Return `msg.sig`.
            }
        }

        revert();
    }

    /**
     * @dev Implementation of IERC165 interface detection
     * @param interfaceId The interface identifier to check
     * @return bool True if the contract supports the interface
     */
    function supportsInterface(
        bytes4 interfaceId
    ) external view virtual override returns (bool) {
        // 0x150b7a02: `type(IERC721Receiver).interfaceId`.
        // 0x4e2312e0: `type(IERC1155Receiver).interfaceId`.
        // 0x1626ba7e: `type(IERC1271).interfaceId`.
        // 0x01ffc9a7: `type(IERC165).interfaceId`.
        return
            interfaceId == 0x150b7a02 ||
            interfaceId == 0x4e2312e0 ||
            interfaceId == 0x1626ba7e ||
            interfaceId == 0x01ffc9a7;
    }
}

File 12 of 30 : Types.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

struct Call {
    address target;
    uint256 value;
    bytes data;
}

struct Session {
    uint256 id;
    address executor;
    address validator;
    uint256 validUntil;
    uint256 validAfter;
    bytes preHook;
    bytes postHook;
    bytes signature;
}

File 13 of 30 : Errors.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

library Errors {
    // Storage related
    error InvalidExecutor();
    error InvalidSession();
    error InvalidSessionId();
    error InvalidOwner();

    // Account related
    error NotFromSelf();

    // Call related
    error CallFailed(uint256 index, bytes returnData);

    // ValidationLogic related
    error InvalidValidator(address validator);
    error InvalidValidatorImpl(address validatorImpl);

    // ECDSAValidator related
    error InvalidSignature();

    // WalletCoreBase related
    error NameTooLong();
    error VersionTooLong();
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 16 of 30 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

File 18 of 30 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 21 of 30 : IValidator.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

interface IValidator {
    function validate(
        bytes32 msgHash,
        bytes calldata validationData
    ) external view;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {Call} from "../Types.sol";

interface IValidation {
    event ValidatorAdded(address validator);

    function getValidationTypedHash(
        uint256 nonce,
        Call[] calldata calls
    ) external view returns (bytes32);

    function computeValidatorAddress(
        address validatorImpl,
        bytes calldata immutableArgs
    ) external view returns (address);
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {Session} from "src/Types.sol";

interface IExecutor {
    function getSessionTypedHash(
        Session calldata session
    ) external view returns (bytes32);

    function validateSession(Session calldata session) external view;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import {Call} from "src/Types.sol";

interface IHook {
    function preCheck(
        Call[] calldata calls,
        bytes calldata hookData,
        address executor
    ) external payable returns (bytes calldata preCheckRet);

    function postCheck(
        bytes calldata preCheckRet,
        bytes calldata hookData,
        address executor
    ) external payable;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 28 of 30 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=node_modules/@openzeppelin/",
    "forge-std/=lib/forge-std/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 2000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"mainStorageImpl","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"returnData","type":"bytes"}],"name":"CallFailed","type":"error"},{"inputs":[],"name":"CloneArgumentsTooLong","type":"error"},{"inputs":[],"name":"Create2EmptyBytecode","type":"error"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidExecutor","type":"error"},{"inputs":[],"name":"InvalidSession","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"}],"name":"InvalidValidatorImpl","type":"error"},{"inputs":[],"name":"NameTooLong","type":"error"},{"inputs":[],"name":"NotFromSelf","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"VersionTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"storageAddress","type":"address"}],"name":"StorageCreated","type":"event"},{"anonymous":false,"inputs":[],"name":"StorageInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"validator","type":"address"}],"name":"ValidatorAdded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"ADDRESS_THIS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAIN_STORAGE_IMPL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SESSION_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"},{"internalType":"bytes","name":"immutableArgs","type":"bytes"}],"name":"addValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"},{"internalType":"bytes","name":"immutableArgs","type":"bytes"}],"name":"computeValidatorAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"executeFromExecutor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"}],"name":"executeFromSelf","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"bytes","name":"validationData","type":"bytes"}],"name":"executeWithValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getMainStorage","outputs":[{"internalType":"contract IStorage","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"getSessionTypedHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"}],"name":"getValidationTypedHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"validateSession","outputs":[],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

6101a060405234801562000011575f80fd5b5060405162002a3938038062002a39833981016040819052620000349162000292565b818162000042825f62000149565b610120526200005381600162000149565b61014052815160208084019190912060e052815190820120610100524660a052620000e060e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c05281516020116200010c5760405163680b6caf60e01b815260040160405180910390fd5b60208151106200012f5760405163f939794f60e01b815260040160405180910390fd5b505030610160526001600160a01b031661018052620004c4565b5f6020835110156200016857620001608362000181565b90506200017b565b81620001758482620003a0565b5060ff90505b92915050565b5f80829050601f81511115620001b7578260405163305a27a960e01b8152600401620001ae91906200046c565b60405180910390fd5b8051620001c482620004a0565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f5b83811015620001fc578181015183820152602001620001e2565b50505f910152565b5f82601f83011262000214575f80fd5b81516001600160401b0380821115620002315762000231620001cc565b604051601f8301601f19908116603f011681019082821181831017156200025c576200025c620001cc565b8160405283815286602085880101111562000275575f80fd5b62000288846020830160208901620001e0565b9695505050505050565b5f805f60608486031215620002a5575f80fd5b83516001600160a01b0381168114620002bc575f80fd5b60208501519093506001600160401b0380821115620002d9575f80fd5b620002e78783880162000204565b93506040860151915080821115620002fd575f80fd5b506200030c8682870162000204565b9150509250925092565b600181811c908216806200032b57607f821691505b6020821081036200034a57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156200039b57805f5260205f20601f840160051c81016020851015620003775750805b601f840160051c820191505b8181101562000398575f815560010162000383565b50505b505050565b81516001600160401b03811115620003bc57620003bc620001cc565b620003d481620003cd845462000316565b8462000350565b602080601f8311600181146200040a575f8415620003f25750858301515b5f19600386901b1c1916600185901b17855562000464565b5f85815260208120601f198616915b828110156200043a5788860151825594840194600190910190840162000419565b50858210156200045857878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b602081525f82518060208401526200048c816040850160208701620001e0565b601f01601f19169190910160400192915050565b805160208083015191908110156200034a575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516124ec6200054d5f395f8181610171015281816104a6015281816108e901526109b401525f8181610340015281816111fd015261151301525f61134b01525f61131f01525f611a2e01525f611a0601525f61196101525f61198b01525f6119b501526124ec5ff3fe6080604052600436106100f6575f3560e01c80638129fc1c11610089578063b964fb2511610058578063b964fb2514610310578063cc025f7c1461032f578063e35dd03b14610362578063fcfbd33a14610381576100fd565b80638129fc1c1461028357806384b0196e1461029757806387b61fdd146102be578063893aa9f6146102f1576100fd565b80631626ba7e116100c55780631626ba7e146101e0578063270b4e66146102185780634da6d8e51461023757806352828a9314610256576100fd565b806301ffc9a71461012c578063046434271461016057806305e3ea13146101ab578063076cd7b0146101cc576100fd565b366100fd57005b5f3560e01c63bc197c81811463f23a6e6182141763150b7a028214171561012857806020526020603cf35b5f80fd5b348015610137575f80fd5b5061014b610146366004611bda565b6103a0565b60405190151581526020015b60405180910390f35b34801561016b575f80fd5b506101937f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610157565b3480156101b6575f80fd5b506101ca6101c5366004611c61565b610457565b005b3480156101d7575f80fd5b506101936104a0565b3480156101eb575f80fd5b506101ff6101fa366004611cb0565b6104cf565b6040516001600160e01b03199091168152602001610157565b348015610223575f80fd5b506101ca610232366004611cf6565b6105ac565b348015610242575f80fd5b506101ca610251366004611d69565b61073f565b348015610261575f80fd5b50610275610270366004611cf6565b6108d2565b604051908152602001610157565b34801561028e575f80fd5b506101ca6108e4565b3480156102a2575f80fd5b506102ab610a2e565b6040516101579796959493929190611e1a565b3480156102c9575f80fd5b506102757f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f047281565b3480156102fc575f80fd5b506101ca61030b366004611ecd565b610a8c565b34801561031b575f80fd5b5061027561032a366004611f0c565b610acf565b34801561033a575f80fd5b506101937f000000000000000000000000000000000000000000000000000000000000000081565b34801561036d575f80fd5b5061019361037c366004611c61565b610ade565b34801561038c575f80fd5b506101ca61039b366004611f47565b610b34565b5f7f150b7a02000000000000000000000000000000000000000000000000000000006001600160e01b03198316148061040257507f4e2312e0000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b8061041d5750630b135d3f60e11b6001600160e01b03198316145b8061045157507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b333014610490576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b838383610bee565b505050565b5f6104ca7f0000000000000000000000000000000000000000000000000000000000000000610d98565b905090565b5f6041829003610540575f6105198585858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610e0e92505050565b5090915050306001600160a01b0382160361053e5750630b135d3f60e11b90506105a5565b505b601482101561055857506001600160e01b03196105a5565b61058761056860145f8587611fc5565b61057191611fec565b60601c856105828560148189611fc5565b610e57565b610599576001600160e01b03196105a2565b630b135d3f60e11b5b90505b9392505050565b6105bc6040820160208301612021565b6001600160a01b0316336001600160a01b031614610606576040517f710c949700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b428160800135118061061b5750806060013542115b15610652576040517f2def1a7600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61065a6104a0565b6001600160a01b0316639a8d38ba823561067a6060850160408601612021565b6040516001600160e01b031960e085901b16815260048101929092526001600160a01b031660248201526044015f6040518083038186803b1580156106bd575f80fd5b505afa1580156106cf573d5f803e3d5ffd5b505050505f6106dd826108d2565b90505f6107066106f36060850160408601612021565b8361070160e087018761203a565b610f65565b90508061049b576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80838361074b836105ac565b6060601461075c60a086018661203a565b9050106108125761077060a085018561203a565b61077e916014915f91611fc5565b61078791611fec565b60601c630a386c0f848461079e60a089018961203a565b6107ac916014908290611fc5565b336040518663ffffffff1660e01b81526004016107cd9594939291906120a6565b5f604051808303815f875af11580156107e8573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261080f91908101906121d3565b90505b61081c878761102b565b50601461082c60c086018661203a565b9050106108c95761084060c085018561203a565b61084e916014915f91611fc5565b61085791611fec565b60601c63604401f38261086d60c088018861203a565b61087b916014908290611fc5565b336040518563ffffffff1660e01b815260040161089b949392919061227b565b5f604051808303815f87803b1580156108b2575f80fd5b505af11580156108c4573d5f803e3d5ffd5b505050505b50505050505050565b5f6104516108df836111d9565b611301565b61090d7f0000000000000000000000000000000000000000000000000000000000000000610d98565b6001600160a01b03163b15610946576040517f5fa50fa13b73db6e10ca2d79663379478c78fca79e62c921d00811e7adf73533905f90a1565b604080513060208201525f910160405160208183030381529060405290505f6109eb8260405160200161099c907f73746f7261676500000000000000000000000000000000000000000000000000815260070190565b604051602081830303815290604052805190602001207f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031661130b9092919063ffffffff16565b6040516001600160a01b03821681529091507f6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f54119060200160405180910390a15050565b5f6060805f805f6060610a3f611318565b610a47611344565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b333014610ac5576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b828261102b565b5f6105a26108df858585611371565b5f6105a2848484604051602001610b18907f76616c696461746f720000000000000000000000000000000000000000000000815260090190565b60405160208183030381529060405280519060200120306115ac565b84848484845f610b426104a0565b6040517f1485540f0000000000000000000000000000000000000000000000000000000081526001600160a01b0386811660048301529190911690631485540f906024016020604051808303815f875af1158015610ba2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc691906122bb565b9050610bd6818787878787611602565b610be08b8b61102b565b505050505050505050505050565b826001600160a01b03163b5f03610c41576040517f5b4cda160000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024015b60405180910390fd5b6040517f76616c696461746f72000000000000000000000000000000000000000000000060208201525f906029016040516020818303038152906040528051906020012090505f610cd284848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0388169190508461130b565b9050610cdc6104a0565b6040517faca2490b0000000000000000000000000000000000000000000000000000000081526001600160a01b03838116600483015260016024830152919091169063aca2490b906044015f604051808303815f87803b158015610d3e575f80fd5b505af1158015610d50573d5f803e3d5ffd5b50506040516001600160a01b03841681527fe366c1c0452ed8eec96861e9e54141ebff23c9ec89fe27b996b45f5ec38849879250602001905060405180910390a15050505050565b604080513060208201525f91610451910160408051601f19818403018152908290527f73746f726167650000000000000000000000000000000000000000000000000060208301529060270160408051601f1981840301815291905280516020909101206001600160a01b038516919030611660565b5f805f8351604103610e45576020840151604085015160608601515f1a610e3788828585611680565b955095509550505050610e50565b505081515f91506002905b9250925092565b5f610e606104a0565b6040517f4cf6ff040000000000000000000000000000000000000000000000000000000081526001600160a01b0387811660048301529190911690634cf6ff04906024015f6040518083038186803b158015610eba575f80fd5b505afa925050508015610ecb575060015b610ed657505f610f5d565b604080514660208083019190915230828401526060808301889052835180840390910181526080830184528051908201207f190100000000000000000000000000000000000000000000000000000000000060a084015260a28084018290528451808503909101815260c29093019093528151910120610f5887828787610f65565b925050505b949350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03861601610fa857610fa1848484611748565b9050610f5d565b6040517f65a8613c0000000000000000000000000000000000000000000000000000000081526001600160a01b038616906365a8613c90610ff1908790879087906004016122d2565b5f6040518083038186803b158015611007575f80fd5b505afa925050508015611018575060015b61102357505f610f5d565b506001610f5d565b60608167ffffffffffffffff811115611046576110466121bf565b60405190808252806020026020018201604052801561107957816020015b60608152602001906001900390816110645790505b5090505f5b828110156111d2575f8085858481811061109a5761109a6122f4565b90506020028101906110ac9190612308565b6110ba906020810190612021565b6001600160a01b03168686858181106110d5576110d56122f4565b90506020028101906110e79190612308565b602001358787868181106110fd576110fd6122f4565b905060200281019061110f9190612308565b61111d90604081019061203a565b60405161112b929190612326565b5f6040518083038185875af1925050503d805f8114611165576040519150601f19603f3d011682016040523d82523d5f602084013e61116a565b606091505b5091509150816111aa5782816040517f5c0dee5d000000000000000000000000000000000000000000000000000000008152600401610c38929190612335565b808484815181106111bd576111bd6122f4565b6020908102919091010152505060010161107e565b5092915050565b5f7f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f04727f0000000000000000000000000000000000000000000000000000000000000000833561122e6040860160208701612021565b61123e6060870160408801612021565b6060870135608088013561125560a08a018a61203a565b604051611263929190612326565b60405190819003902061127960c08b018b61203a565b604051611287929190612326565b60408051918290038220602083019a909a526001600160a01b0398891690820152606081019690965293861660808601529490911660a084015260c083015260e082019290925261010081019190915261012081019190915261014001604051602081830303815290604052805190602001209050919050565b5f610451826117a2565b5f6105a28484845f6117e9565b60606104ca7f00000000000000000000000000000000000000000000000000000000000000005f611802565b60606104ca7f00000000000000000000000000000000000000000000000000000000000000006001611802565b5f808267ffffffffffffffff81111561138c5761138c6121bf565b6040519080825280602002602001820160405280156113b5578160200160208202803683370190505b5090505f5b838110156114ef577f84fa2cf05cd88e992eae77e851af68a4ee278dcff6ef504e487a55b3baadfbe58585838181106113f5576113f56122f4565b90506020028101906114079190612308565b611415906020810190612021565b868684818110611427576114276122f4565b90506020028101906114399190612308565b6020013587878581811061144f5761144f6122f4565b90506020028101906114619190612308565b61146f90604081019061203a565b60405161147d929190612326565b6040519081900381206114b4949392916020019384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001208282815181106114dc576114dc6122f4565b60209081029190910101526001016113ba565b507ff1706fcb981702148f7e85153257c9d3863f62998c5504ab0b94172a9e1dacfd7f00000000000000000000000000000000000000000000000000000000000000008683604051602001611544919061234d565b6040516020818303038152906040528051906020012060405160200161158c94939291909384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001209150509392505050565b5f6115f885858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0389169190508585611660565b9695505050505050565b5f61160e878787610acf565b90505f61161d85838686610f65565b905080611656576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050505050565b5f8061166c86866118ac565b90506115f884828051906020012085611923565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156116b957505f9150600390508261173e565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561170a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b03811661173557505f92506001915082905061173e565b92505f91508190505b9450945094915050565b5f8061178b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508993925050610e0e9050565b50506001600160a01b031630149150509392505050565b5f6104516117ae611955565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f806117f586866118ac565b90506115f8838583611a7e565b606060ff831461181c5761181583611b5d565b9050610451565b81805461182890612390565b80601f016020809104026020016040519081016040528092919081815260200182805461185490612390565b801561189f5780601f106118765761010080835404028352916020019161189f565b820191905f5260205f20905b81548152906001019060200180831161188257829003601f168201915b5050505050905092915050565b6060615fd3825111156118eb576040517f9428905400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81516118f890602d6123c2565b838360405160200161190c939291906123e1565b604051602081830303815290604052905092915050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156119ad57507f000000000000000000000000000000000000000000000000000000000000000046145b156119d757507f000000000000000000000000000000000000000000000000000000000000000090565b6104ca604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f83471015611ac2576040517fcf47918100000000000000000000000000000000000000000000000000000000815247600482015260248101859052604401610c38565b81515f03611afc576040517f4ca249dc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8282516020840186f590503d151981151615611b1d576040513d5f823e3d81fd5b6001600160a01b0381166105a5576040517fb06ebf3d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60605f611b6983611b9a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610451576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215611bea575f80fd5b81356001600160e01b0319811681146105a5575f80fd5b80356001600160a01b0381168114611c17575f80fd5b919050565b5f8083601f840112611c2c575f80fd5b50813567ffffffffffffffff811115611c43575f80fd5b602083019150836020828501011115611c5a575f80fd5b9250929050565b5f805f60408486031215611c73575f80fd5b611c7c84611c01565b9250602084013567ffffffffffffffff811115611c97575f80fd5b611ca386828701611c1c565b9497909650939450505050565b5f805f60408486031215611cc2575f80fd5b83359250602084013567ffffffffffffffff811115611c97575f80fd5b5f6101008284031215611cf0575f80fd5b50919050565b5f60208284031215611d06575f80fd5b813567ffffffffffffffff811115611d1c575f80fd5b610f5d84828501611cdf565b5f8083601f840112611d38575f80fd5b50813567ffffffffffffffff811115611d4f575f80fd5b6020830191508360208260051b8501011115611c5a575f80fd5b5f805f60408486031215611d7b575f80fd5b833567ffffffffffffffff80821115611d92575f80fd5b611d9e87838801611d28565b90955093506020860135915080821115611db6575f80fd5b50611dc386828701611cdf565b9150509250925092565b5f5b83811015611de7578181015183820152602001611dcf565b50505f910152565b5f8151808452611e06816020860160208601611dcd565b601f01601f19169290920160200192915050565b7fff00000000000000000000000000000000000000000000000000000000000000881681525f602060e06020840152611e5660e084018a611def565b8381036040850152611e68818a611def565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015611ebb57835183529284019291840191600101611e9f565b50909c9b505050505050505050505050565b5f8060208385031215611ede575f80fd5b823567ffffffffffffffff811115611ef4575f80fd5b611f0085828601611d28565b90969095509350505050565b5f805f60408486031215611f1e575f80fd5b83359250602084013567ffffffffffffffff811115611f3b575f80fd5b611ca386828701611d28565b5f805f805f60608688031215611f5b575f80fd5b853567ffffffffffffffff80821115611f72575f80fd5b611f7e89838a01611d28565b9097509550859150611f9260208901611c01565b94506040880135915080821115611fa7575f80fd5b50611fb488828901611c1c565b969995985093965092949392505050565b5f8085851115611fd3575f80fd5b83861115611fdf575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156120195780818660140360031b1b83161692505b505092915050565b5f60208284031215612031575f80fd5b6105a582611c01565b5f808335601e1984360301811261204f575f80fd5b83018035915067ffffffffffffffff821115612069575f80fd5b602001915036819003821315611c5a575f80fd5b81835281816020850137505f602082840101525f6020601f19601f840116840101905092915050565b60608082528181018690525f906080600588901b8401810190840189845b8a811015612190577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808785030183528135605e198d3603018112612106575f80fd5b8c016001600160a01b0361211982611c01565b16855260208082013581870152604080830135601e1984360301811261213d575f80fd5b90920181810192903567ffffffffffffffff81111561215a575f80fd5b803603841315612168575f80fd5b888289015261217a898901828661207d565b97505050938401939290920191506001016120c4565b50505083810360208501526121a681878961207d565b925050506115f860408301846001600160a01b03169052565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156121e3575f80fd5b815167ffffffffffffffff808211156121fa575f80fd5b818401915084601f83011261220d575f80fd5b81518181111561221f5761221f6121bf565b604051601f8201601f19908116603f01168101908382118183101715612247576122476121bf565b8160405282815287602084870101111561225f575f80fd5b612270836020830160208801611dcd565b979650505050505050565b606081525f61228d6060830187611def565b82810360208401526122a081868861207d565b9150506001600160a01b038316604083015295945050505050565b5f602082840312156122cb575f80fd5b5051919050565b838152604060208201525f6122eb60408301848661207d565b95945050505050565b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261231c575f80fd5b9190910192915050565b818382375f9101908152919050565b828152604060208201525f6105a26040830184611def565b602080825282518282018190525f9190848201906040850190845b8181101561238457835183529284019291840191600101612368565b50909695505050505050565b600181811c908216806123a457607f821691505b602082108103611cf057634e487b7160e01b5f52602260045260245ffd5b8082018082111561045157634e487b7160e01b5f52601160045260245ffd5b7f610000000000000000000000000000000000000000000000000000000000000081527fffff0000000000000000000000000000000000000000000000000000000000008460f01b1660018201527f3d81600a3d39f3363d3d373d3d3d363d7300000000000000000000000000000060038201526bffffffffffffffffffffffff198360601b1660148201527f5af43d82803e903d91602b57fd5bf3000000000000000000000000000000000060288201525f82516124a7816037850160208701611dcd565b9190910160370194935050505056fea2646970667358221220c92c47531d832aef2d67f1d05c61a484be1b86fcbf050ecd638cc408d1e32a2964736f6c634300081700330000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000b77616c6c65742d636f72650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005312e302e30000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080604052600436106100f6575f3560e01c80638129fc1c11610089578063b964fb2511610058578063b964fb2514610310578063cc025f7c1461032f578063e35dd03b14610362578063fcfbd33a14610381576100fd565b80638129fc1c1461028357806384b0196e1461029757806387b61fdd146102be578063893aa9f6146102f1576100fd565b80631626ba7e116100c55780631626ba7e146101e0578063270b4e66146102185780634da6d8e51461023757806352828a9314610256576100fd565b806301ffc9a71461012c578063046434271461016057806305e3ea13146101ab578063076cd7b0146101cc576100fd565b366100fd57005b5f3560e01c63bc197c81811463f23a6e6182141763150b7a028214171561012857806020526020603cf35b5f80fd5b348015610137575f80fd5b5061014b610146366004611bda565b6103a0565b60405190151581526020015b60405180910390f35b34801561016b575f80fd5b506101937f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d3081565b6040516001600160a01b039091168152602001610157565b3480156101b6575f80fd5b506101ca6101c5366004611c61565b610457565b005b3480156101d7575f80fd5b506101936104a0565b3480156101eb575f80fd5b506101ff6101fa366004611cb0565b6104cf565b6040516001600160e01b03199091168152602001610157565b348015610223575f80fd5b506101ca610232366004611cf6565b6105ac565b348015610242575f80fd5b506101ca610251366004611d69565b61073f565b348015610261575f80fd5b50610275610270366004611cf6565b6108d2565b604051908152602001610157565b34801561028e575f80fd5b506101ca6108e4565b3480156102a2575f80fd5b506102ab610a2e565b6040516101579796959493929190611e1a565b3480156102c9575f80fd5b506102757f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f047281565b3480156102fc575f80fd5b506101ca61030b366004611ecd565b610a8c565b34801561031b575f80fd5b5061027561032a366004611f0c565b610acf565b34801561033a575f80fd5b506101937f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb81565b34801561036d575f80fd5b5061019361037c366004611c61565b610ade565b34801561038c575f80fd5b506101ca61039b366004611f47565b610b34565b5f7f150b7a02000000000000000000000000000000000000000000000000000000006001600160e01b03198316148061040257507f4e2312e0000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b8061041d5750630b135d3f60e11b6001600160e01b03198316145b8061045157507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b333014610490576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b838383610bee565b505050565b5f6104ca7f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30610d98565b905090565b5f6041829003610540575f6105198585858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610e0e92505050565b5090915050306001600160a01b0382160361053e5750630b135d3f60e11b90506105a5565b505b601482101561055857506001600160e01b03196105a5565b61058761056860145f8587611fc5565b61057191611fec565b60601c856105828560148189611fc5565b610e57565b610599576001600160e01b03196105a2565b630b135d3f60e11b5b90505b9392505050565b6105bc6040820160208301612021565b6001600160a01b0316336001600160a01b031614610606576040517f710c949700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b428160800135118061061b5750806060013542115b15610652576040517f2def1a7600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61065a6104a0565b6001600160a01b0316639a8d38ba823561067a6060850160408601612021565b6040516001600160e01b031960e085901b16815260048101929092526001600160a01b031660248201526044015f6040518083038186803b1580156106bd575f80fd5b505afa1580156106cf573d5f803e3d5ffd5b505050505f6106dd826108d2565b90505f6107066106f36060850160408601612021565b8361070160e087018761203a565b610f65565b90508061049b576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80838361074b836105ac565b6060601461075c60a086018661203a565b9050106108125761077060a085018561203a565b61077e916014915f91611fc5565b61078791611fec565b60601c630a386c0f848461079e60a089018961203a565b6107ac916014908290611fc5565b336040518663ffffffff1660e01b81526004016107cd9594939291906120a6565b5f604051808303815f875af11580156107e8573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261080f91908101906121d3565b90505b61081c878761102b565b50601461082c60c086018661203a565b9050106108c95761084060c085018561203a565b61084e916014915f91611fc5565b61085791611fec565b60601c63604401f38261086d60c088018861203a565b61087b916014908290611fc5565b336040518563ffffffff1660e01b815260040161089b949392919061227b565b5f604051808303815f87803b1580156108b2575f80fd5b505af11580156108c4573d5f803e3d5ffd5b505050505b50505050505050565b5f6104516108df836111d9565b611301565b61090d7f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30610d98565b6001600160a01b03163b15610946576040517f5fa50fa13b73db6e10ca2d79663379478c78fca79e62c921d00811e7adf73533905f90a1565b604080513060208201525f910160405160208183030381529060405290505f6109eb8260405160200161099c907f73746f7261676500000000000000000000000000000000000000000000000000815260070190565b604051602081830303815290604052805190602001207f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d306001600160a01b031661130b9092919063ffffffff16565b6040516001600160a01b03821681529091507f6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f54119060200160405180910390a15050565b5f6060805f805f6060610a3f611318565b610a47611344565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b333014610ac5576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b828261102b565b5f6105a26108df858585611371565b5f6105a2848484604051602001610b18907f76616c696461746f720000000000000000000000000000000000000000000000815260090190565b60405160208183030381529060405280519060200120306115ac565b84848484845f610b426104a0565b6040517f1485540f0000000000000000000000000000000000000000000000000000000081526001600160a01b0386811660048301529190911690631485540f906024016020604051808303815f875af1158015610ba2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc691906122bb565b9050610bd6818787878787611602565b610be08b8b61102b565b505050505050505050505050565b826001600160a01b03163b5f03610c41576040517f5b4cda160000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024015b60405180910390fd5b6040517f76616c696461746f72000000000000000000000000000000000000000000000060208201525f906029016040516020818303038152906040528051906020012090505f610cd284848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0388169190508461130b565b9050610cdc6104a0565b6040517faca2490b0000000000000000000000000000000000000000000000000000000081526001600160a01b03838116600483015260016024830152919091169063aca2490b906044015f604051808303815f87803b158015610d3e575f80fd5b505af1158015610d50573d5f803e3d5ffd5b50506040516001600160a01b03841681527fe366c1c0452ed8eec96861e9e54141ebff23c9ec89fe27b996b45f5ec38849879250602001905060405180910390a15050505050565b604080513060208201525f91610451910160408051601f19818403018152908290527f73746f726167650000000000000000000000000000000000000000000000000060208301529060270160408051601f1981840301815291905280516020909101206001600160a01b038516919030611660565b5f805f8351604103610e45576020840151604085015160608601515f1a610e3788828585611680565b955095509550505050610e50565b505081515f91506002905b9250925092565b5f610e606104a0565b6040517f4cf6ff040000000000000000000000000000000000000000000000000000000081526001600160a01b0387811660048301529190911690634cf6ff04906024015f6040518083038186803b158015610eba575f80fd5b505afa925050508015610ecb575060015b610ed657505f610f5d565b604080514660208083019190915230828401526060808301889052835180840390910181526080830184528051908201207f190100000000000000000000000000000000000000000000000000000000000060a084015260a28084018290528451808503909101815260c29093019093528151910120610f5887828787610f65565b925050505b949350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03861601610fa857610fa1848484611748565b9050610f5d565b6040517f65a8613c0000000000000000000000000000000000000000000000000000000081526001600160a01b038616906365a8613c90610ff1908790879087906004016122d2565b5f6040518083038186803b158015611007575f80fd5b505afa925050508015611018575060015b61102357505f610f5d565b506001610f5d565b60608167ffffffffffffffff811115611046576110466121bf565b60405190808252806020026020018201604052801561107957816020015b60608152602001906001900390816110645790505b5090505f5b828110156111d2575f8085858481811061109a5761109a6122f4565b90506020028101906110ac9190612308565b6110ba906020810190612021565b6001600160a01b03168686858181106110d5576110d56122f4565b90506020028101906110e79190612308565b602001358787868181106110fd576110fd6122f4565b905060200281019061110f9190612308565b61111d90604081019061203a565b60405161112b929190612326565b5f6040518083038185875af1925050503d805f8114611165576040519150601f19603f3d011682016040523d82523d5f602084013e61116a565b606091505b5091509150816111aa5782816040517f5c0dee5d000000000000000000000000000000000000000000000000000000008152600401610c38929190612335565b808484815181106111bd576111bd6122f4565b6020908102919091010152505060010161107e565b5092915050565b5f7f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f04727f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb833561122e6040860160208701612021565b61123e6060870160408801612021565b6060870135608088013561125560a08a018a61203a565b604051611263929190612326565b60405190819003902061127960c08b018b61203a565b604051611287929190612326565b60408051918290038220602083019a909a526001600160a01b0398891690820152606081019690965293861660808601529490911660a084015260c083015260e082019290925261010081019190915261012081019190915261014001604051602081830303815290604052805190602001209050919050565b5f610451826117a2565b5f6105a28484845f6117e9565b60606104ca7f77616c6c65742d636f726500000000000000000000000000000000000000000b5f611802565b60606104ca7f312e302e300000000000000000000000000000000000000000000000000000056001611802565b5f808267ffffffffffffffff81111561138c5761138c6121bf565b6040519080825280602002602001820160405280156113b5578160200160208202803683370190505b5090505f5b838110156114ef577f84fa2cf05cd88e992eae77e851af68a4ee278dcff6ef504e487a55b3baadfbe58585838181106113f5576113f56122f4565b90506020028101906114079190612308565b611415906020810190612021565b868684818110611427576114276122f4565b90506020028101906114399190612308565b6020013587878581811061144f5761144f6122f4565b90506020028101906114619190612308565b61146f90604081019061203a565b60405161147d929190612326565b6040519081900381206114b4949392916020019384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001208282815181106114dc576114dc6122f4565b60209081029190910101526001016113ba565b507ff1706fcb981702148f7e85153257c9d3863f62998c5504ab0b94172a9e1dacfd7f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb8683604051602001611544919061234d565b6040516020818303038152906040528051906020012060405160200161158c94939291909384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001209150509392505050565b5f6115f885858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0389169190508585611660565b9695505050505050565b5f61160e878787610acf565b90505f61161d85838686610f65565b905080611656576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050505050565b5f8061166c86866118ac565b90506115f884828051906020012085611923565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156116b957505f9150600390508261173e565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561170a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b03811661173557505f92506001915082905061173e565b92505f91508190505b9450945094915050565b5f8061178b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508993925050610e0e9050565b50506001600160a01b031630149150509392505050565b5f6104516117ae611955565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f806117f586866118ac565b90506115f8838583611a7e565b606060ff831461181c5761181583611b5d565b9050610451565b81805461182890612390565b80601f016020809104026020016040519081016040528092919081815260200182805461185490612390565b801561189f5780601f106118765761010080835404028352916020019161189f565b820191905f5260205f20905b81548152906001019060200180831161188257829003601f168201915b5050505050905092915050565b6060615fd3825111156118eb576040517f9428905400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81516118f890602d6123c2565b838360405160200161190c939291906123e1565b604051602081830303815290604052905092915050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b5f306001600160a01b037f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb161480156119ad57507f000000000000000000000000000000000000000000000000000000000000000146145b156119d757507f69edb7f69124e4ceaeaa34c2e15f8d8629f6d43ee6563613581e67efc329c05290565b6104ca604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f3a6a311c4f8ac232d0113c7c5ead9364db4fbb8887d940d7ba5c142d45d6acfb918101919091527f06c015bd22b4c69690933c1058878ebdfef31f9aaae40bbe86d8a09fe1b2972c60608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f83471015611ac2576040517fcf47918100000000000000000000000000000000000000000000000000000000815247600482015260248101859052604401610c38565b81515f03611afc576040517f4ca249dc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8282516020840186f590503d151981151615611b1d576040513d5f823e3d81fd5b6001600160a01b0381166105a5576040517fb06ebf3d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60605f611b6983611b9a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610451576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215611bea575f80fd5b81356001600160e01b0319811681146105a5575f80fd5b80356001600160a01b0381168114611c17575f80fd5b919050565b5f8083601f840112611c2c575f80fd5b50813567ffffffffffffffff811115611c43575f80fd5b602083019150836020828501011115611c5a575f80fd5b9250929050565b5f805f60408486031215611c73575f80fd5b611c7c84611c01565b9250602084013567ffffffffffffffff811115611c97575f80fd5b611ca386828701611c1c565b9497909650939450505050565b5f805f60408486031215611cc2575f80fd5b83359250602084013567ffffffffffffffff811115611c97575f80fd5b5f6101008284031215611cf0575f80fd5b50919050565b5f60208284031215611d06575f80fd5b813567ffffffffffffffff811115611d1c575f80fd5b610f5d84828501611cdf565b5f8083601f840112611d38575f80fd5b50813567ffffffffffffffff811115611d4f575f80fd5b6020830191508360208260051b8501011115611c5a575f80fd5b5f805f60408486031215611d7b575f80fd5b833567ffffffffffffffff80821115611d92575f80fd5b611d9e87838801611d28565b90955093506020860135915080821115611db6575f80fd5b50611dc386828701611cdf565b9150509250925092565b5f5b83811015611de7578181015183820152602001611dcf565b50505f910152565b5f8151808452611e06816020860160208601611dcd565b601f01601f19169290920160200192915050565b7fff00000000000000000000000000000000000000000000000000000000000000881681525f602060e06020840152611e5660e084018a611def565b8381036040850152611e68818a611def565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015611ebb57835183529284019291840191600101611e9f565b50909c9b505050505050505050505050565b5f8060208385031215611ede575f80fd5b823567ffffffffffffffff811115611ef4575f80fd5b611f0085828601611d28565b90969095509350505050565b5f805f60408486031215611f1e575f80fd5b83359250602084013567ffffffffffffffff811115611f3b575f80fd5b611ca386828701611d28565b5f805f805f60608688031215611f5b575f80fd5b853567ffffffffffffffff80821115611f72575f80fd5b611f7e89838a01611d28565b9097509550859150611f9260208901611c01565b94506040880135915080821115611fa7575f80fd5b50611fb488828901611c1c565b969995985093965092949392505050565b5f8085851115611fd3575f80fd5b83861115611fdf575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156120195780818660140360031b1b83161692505b505092915050565b5f60208284031215612031575f80fd5b6105a582611c01565b5f808335601e1984360301811261204f575f80fd5b83018035915067ffffffffffffffff821115612069575f80fd5b602001915036819003821315611c5a575f80fd5b81835281816020850137505f602082840101525f6020601f19601f840116840101905092915050565b60608082528181018690525f906080600588901b8401810190840189845b8a811015612190577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808785030183528135605e198d3603018112612106575f80fd5b8c016001600160a01b0361211982611c01565b16855260208082013581870152604080830135601e1984360301811261213d575f80fd5b90920181810192903567ffffffffffffffff81111561215a575f80fd5b803603841315612168575f80fd5b888289015261217a898901828661207d565b97505050938401939290920191506001016120c4565b50505083810360208501526121a681878961207d565b925050506115f860408301846001600160a01b03169052565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156121e3575f80fd5b815167ffffffffffffffff808211156121fa575f80fd5b818401915084601f83011261220d575f80fd5b81518181111561221f5761221f6121bf565b604051601f8201601f19908116603f01168101908382118183101715612247576122476121bf565b8160405282815287602084870101111561225f575f80fd5b612270836020830160208801611dcd565b979650505050505050565b606081525f61228d6060830187611def565b82810360208401526122a081868861207d565b9150506001600160a01b038316604083015295945050505050565b5f602082840312156122cb575f80fd5b5051919050565b838152604060208201525f6122eb60408301848661207d565b95945050505050565b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261231c575f80fd5b9190910192915050565b818382375f9101908152919050565b828152604060208201525f6105a26040830184611def565b602080825282518282018190525f9190848201906040850190845b8181101561238457835183529284019291840191600101612368565b50909695505050505050565b600181811c908216806123a457607f821691505b602082108103611cf057634e487b7160e01b5f52602260045260245ffd5b8082018082111561045157634e487b7160e01b5f52601160045260245ffd5b7f610000000000000000000000000000000000000000000000000000000000000081527fffff0000000000000000000000000000000000000000000000000000000000008460f01b1660018201527f3d81600a3d39f3363d3d373d3d3d363d7300000000000000000000000000000060038201526bffffffffffffffffffffffff198360601b1660148201527f5af43d82803e903d91602b57fd5bf3000000000000000000000000000000000060288201525f82516124a7816037850160208701611dcd565b9190910160370194935050505056fea2646970667358221220c92c47531d832aef2d67f1d05c61a484be1b86fcbf050ecd638cc408d1e32a2964736f6c63430008170033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000b77616c6c65742d636f72650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005312e302e30000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : mainStorageImpl (address): 0x7DAF91DFe55FcAb363416A6E3bceb3Da34ff1d30
Arg [1] : name (string): wallet-core
Arg [2] : version (string): 1.0.0

-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [3] : 000000000000000000000000000000000000000000000000000000000000000b
Arg [4] : 77616c6c65742d636f7265000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [6] : 312e302e30000000000000000000000000000000000000000000000000000000


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.