Feature Tip: Add private address tag to any address under My Name Tag !
Latest 6 from a total of 6 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Transfer | 22646958 | 43 hrs ago | IN | 0 ETH | 0.00009073 | ||||
Transfer | 22646935 | 43 hrs ago | IN | 0 ETH | 0.0000967 | ||||
Transfer | 22613627 | 6 days ago | IN | 0.0002 ETH | 0.00002847 | ||||
Initialize | 22524032 | 19 days ago | IN | 0 ETH | 0.00006115 | ||||
Initialize | 22457216 | 28 days ago | IN | 0 ETH | 0.00010309 | ||||
Initialize | 22429382 | 32 days ago | IN | 0 ETH | 0.00002689 |
Latest 2 internal transactions
Advanced mode:
Parent Transaction Hash | Method | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|---|
0x61004d3d | 22429382 | 32 days ago | Contract Creation | 0 ETH | |||
0x6101a060 | 22414611 | 34 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
WalletCore
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 2000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {IWalletCore} from "./interfaces/IWalletCore.sol"; import {IStorage} from "./interfaces/IStorage.sol"; import {WalletCoreBase} from "./base/WalletCoreBase.sol"; import {ECDSA, WalletCoreLib} from "./lib/WalletCoreLib.sol"; import {ValidationLogic} from "./ValidationLogic.sol"; import {ExecutionLogic} from "./ExecutionLogic.sol"; import {ExecutorLogic} from "./ExecutorLogic.sol"; import {FallbackHandler} from "./FallbackHandler.sol"; import {Call, Session} from "./Types.sol"; import {Errors} from "./lib/Errors.sol"; // Do not set any states in this contract contract WalletCore is IWalletCore, ValidationLogic, ExecutionLogic, ExecutorLogic, FallbackHandler, EIP712 { using Clones for address; // EIP-1271 bytes4 private constant MAGIC_VALUE = 0x1626ba7e; bytes4 private constant INVALID_VALUE = 0xffffffff; address public immutable ADDRESS_THIS; address public immutable MAIN_STORAGE_IMPL; constructor( address mainStorageImpl, string memory name, string memory version ) EIP712(name, version) { // Check name/version lengths, assure remain stateless if (bytes(name).length >= 32) { revert Errors.NameTooLong(); } if (bytes(version).length >= 32) { revert Errors.VersionTooLong(); } ADDRESS_THIS = address(this); MAIN_STORAGE_IMPL = mainStorageImpl; } /** * @dev Modifier to make a function callable by the account itself or EOA address under 7702 */ modifier onlySelf() { if (msg.sender != address(this)) revert Errors.NotFromSelf(); _; } /** * @notice Initializes the wallet core * @dev Can only be called once during account creation with each storage version */ function initialize() external { if (WalletCoreLib._getStorage(MAIN_STORAGE_IMPL).code.length != 0) { emit StorageInitialized(); return; } // immutable args bytes memory owner = abi.encode(address(this)); address createdAddress = MAIN_STORAGE_IMPL .cloneDeterministicWithImmutableArgs( owner, WalletCoreLib.STORAGE_SALT ); emit StorageCreated(createdAddress); } /** * @notice Executes multiple contract calls in a single transaction * @dev Only callable by the account itself * @param calls Array of Call structs containing destination address, value, and calldata */ function executeFromSelf(Call[] calldata calls) external onlySelf { _batchCall(calls); } /** * @notice Executes a batch of calls after validation by a designated validator contract * @dev The validator must be previously registered and the validation data must be valid * @dev If validator address == 1, uses default built-in ECDSA ecrecover for signature verification * @param calls Array of Call structs to be executed, each containing destination address, value, and calldata * @param validator Address of the validator contract that will verify this transaction (use address(1) for ECDSA) * @param validationData Encoded data required by the validator for transaction verification. For ECDSA, this is the signature */ function executeWithValidator( Call[] calldata calls, address validator, bytes calldata validationData ) external onlyValidator(calls, validator, validationData) { _batchCall(calls); } /** * @notice Executes a batch of calls through a registered executor using a valid session * @dev Only callable by pre-signed sessions with valid signatures * @dev Executes hooks before and after the batch call if specified in the session * @param calls Array of Call structs to be executed, each containing destination address, value, and calldata * @param session Session struct containing executor details, permissions, and hook configurations */ function executeFromExecutor( Call[] calldata calls, Session calldata session ) external onlyValidSession(session, calls) { _batchCall(calls); } /** * @notice Registers a new validator contract for transaction validation * @dev Only callable by the wallet itself * @param validatorImpl The implementation address of the validator contract to be registered * @param immutableArgs Initialization data for the validator contract (can be empty) */ function addValidator( address validatorImpl, bytes calldata immutableArgs ) external onlySelf { _addValidator(validatorImpl, immutableArgs); } /** * @notice Implements EIP-1271 signature validation standard * @dev There are two types of signatures: * 1. 65 bytes: ECDSA signature * 2. >20 bytes: (validator, signature) pair * @param _hash The hash of the data to be validated * @param signature The signature to be validated * @return bytes4 Returns MAGIC_VALUE (0x1626ba7e) if valid, INVALID_VALUE (0xffffffff) if invalid */ function isValidSignature( bytes32 _hash, bytes calldata signature ) external view returns (bytes4) { // 7702 Post upgrade compatibility: try validate signature for EOA sigs // Make sure the _signature can be decoded if (signature.length == 65) { (address recovered, , ) = ECDSA.tryRecover(_hash, signature); if (recovered == address(this)) return MAGIC_VALUE; } if (signature.length < 20) return INVALID_VALUE; return isValidSignature( address(bytes20(signature[:20])), _hash, signature[20:] ) ? MAGIC_VALUE : INVALID_VALUE; } /** * @notice Returns the address of the wallet's storage contract * @dev Uses deterministic deployment to calculate the storage contract address. * This contract only stores core wallet states. For additional states, * create and query new dedicated storage contracts instead of modifying * this one. * @return address The deployed storage contract address for this wallet * @custom:architecture New features requiring additional storage should: * 1. Deploy a new dedicated storage contract * 2. Implement separate getter methods for the new storage */ function getMainStorage() public view override(IWalletCore, WalletCoreBase) returns (IStorage) { return IStorage(WalletCoreLib._getStorage(MAIN_STORAGE_IMPL)); } /** * @notice Creates a typed data hash following EIP-712 standard * @param structHash The hash of the struct data to be signed * @return The final EIP-712 typed data hash that can be signed by a wallet */ function _hashTypedDataV4( bytes32 structHash ) internal view override(EIP712, WalletCoreBase) returns (bytes32) { return EIP712._hashTypedDataV4(structHash); } /** * @notice Returns the address of the current wallet implementation * @dev This function is used in the proxy pattern to identify the implementation contract * @return ADDRESS_THIS The address of this contract, which serves as the implementation */ function _walletImplementation() internal view override returns (address) { return ADDRESS_THIS; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/Clones.sol) pragma solidity ^0.8.20; import {Create2} from "../utils/Create2.sol"; import {Errors} from "../utils/Errors.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { error CloneArgumentsTooLong(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone(address implementation, uint256 value) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple times will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } /** * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create opcode, which should never revert. */ function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) { return cloneWithImmutableArgs(implementation, args, 0); } /** * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value` * parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneWithImmutableArgs( address implementation, bytes memory args, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); assembly ("memory-safe") { instance := create(value, add(bytecode, 0x20), mload(bytecode)) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice * at the same address. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs], * but with a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, uint256 value ) internal returns (address instance) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.deploy(value, salt, bytecode); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args); return Create2.computeAddress(salt, keccak256(bytecode), deployer); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this)); } /** * @dev Get the immutable args attached to a clone. * * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this * function will return an empty array. * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or * `cloneDeterministicWithImmutableArgs`, this function will return the args array used at * creation. * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This * function should only be used to check addresses that are known to be clones. */ function fetchCloneArgs(address instance) internal view returns (bytes memory) { bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short assembly ("memory-safe") { extcodecopy(instance, add(result, 32), 45, mload(result)) } return result; } /** * @dev Helper that prepares the initcode of the proxy with immutable args. * * An assembly variant of this function requires copying the `args` array, which can be efficiently done using * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using * abi.encodePacked is more expensive but also more portable and easier to review. * * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes. * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes. */ function _cloneCodeWithImmutableArgs( address implementation, bytes memory args ) private pure returns (bytes memory) { if (args.length > 24531) revert CloneArgumentsTooLong(); return abi.encodePacked( hex"61", uint16(args.length + 45), hex"3d81600a3d39f3363d3d373d3d3d363d73", implementation, hex"5af43d82803e903d91602b57fd5bf3", args ); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {IStorage} from "./IStorage.sol"; import {Call, Session} from "src/Types.sol"; interface IWalletCore is IERC165 { // EVENTS event StorageInitialized(); event StorageCreated(address storageAddress); function initialize() external; function executeFromSelf(Call[] calldata calls) external; function executeWithValidator( Call[] calldata calls, address validator, bytes calldata validationData ) external; function executeFromExecutor( Call[] calldata calls, Session calldata session ) external; function addValidator( address validatorImpl, bytes calldata immutableArgs ) external; function getMainStorage() external view returns (IStorage); function isValidSignature( bytes32 hash, bytes calldata signature ) external view returns (bytes4); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; interface IStorage { // EVENTS event NonceConsumed(uint256 utilisedNonce); event ValidatorStatusUpdated(address validator, bool status); event SessionRevoked(uint256 id); // FUNCTIONS function readAndUpdateNonce(address validator) external returns (uint256); function setValidatorStatus(address validator, bool isValid) external; function revokeSession(uint256 id) external; function getOwner() external view returns (address); function getNonce() external view returns (uint256); function validateValidator(address validator) external view; function validateSession(uint256 id, address validator) external view; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {IStorage} from "../interfaces/IStorage.sol"; abstract contract WalletCoreBase { function _hashTypedDataV4( bytes32 structHash ) internal view virtual returns (bytes32); function _walletImplementation() internal view virtual returns (address); function getMainStorage() public view virtual returns (IStorage); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {IValidator} from "../interfaces/IValidator.sol"; library WalletCoreLib { using ECDSA for bytes32; using Clones for address; /** * @notice new storage should have a different salt */ bytes32 public constant STORAGE_SALT = keccak256(abi.encodePacked("storage")); bytes32 public constant VALIDATOR_SALT = keccak256(abi.encodePacked("validator")); address public constant SELF_VALIDATION_ADDRESS = address(1); /** * @notice Computes the deterministic address of the wallet's storage contract * @dev Uses OpenZeppelin's Clones library to predict the address before deployment * @param storageImpl The implementation address of the storage contract * @return address The deterministic address where the storage clone will be deployed * @custom:args The immutable arguments encoded are: * - address(this): The wallet address that owns this storage * @custom:salt A unique salt derived from STORAGE_SALT */ function _getStorage(address storageImpl) internal view returns (address) { return storageImpl.predictDeterministicAddressWithImmutableArgs( abi.encode(address(this)), STORAGE_SALT, address(this) ); } /** * @notice Validates a transaction or operation using either ECDSA signatures or an external validator contract * @dev Two validation methods are supported: * 1. ECDSA validation (when validator == address(1)): Recovers signer from signature and verifies it matches the wallet address * 2. External validator (any other address): Calls the validator contract and checks if it's authorized to validate * @param validator Address of the validator to use (address(1) for ECDSA signature validation) * @param typedDataHash EIP-712 typed data hash of the data to be validated * @param validationData For ECDSA: the 65-byte signature; For external validators: custom validation data * @return bool True if validation succeeds, false otherwise * @custom:security Ensure validator contracts are properly verified and authorized before use */ function validate( address validator, bytes32 typedDataHash, bytes calldata validationData ) internal view returns (bool) { if (validator == SELF_VALIDATION_ADDRESS) { return _validateSelf(typedDataHash, validationData); } else { try IValidator(validator).validate(typedDataHash, validationData) { return true; } catch { return false; } } } /** * @notice Validates that a signature was signed by this contract * @param typedDataHash The hash of the data that was signed * @param signature The ECDSA signature to verify * @return bool True if the validation passes, false otherwise * @dev Reverts with INVALID_SIGNATURE if the signer is not account itself */ function _validateSelf( bytes32 typedDataHash, bytes calldata signature ) internal view returns (bool) { (address recoveredSigner, , ) = typedDataHash.tryRecover(signature); return recoveredSigner == address(this); } /** * @notice Creates a unique deployment salt by combining validator implementation and init code * @param validatorImpl The validator implementation address * @param initHash Hash of the validator's initialization code * @return bytes32 The computed salt for deterministic deployment */ function _computeCreationSalt( address validatorImpl, bytes32 initHash ) internal pure returns (bytes32) { return keccak256(abi.encode(validatorImpl, initHash)); } /** * @notice Computes the deterministic address of a validator contract before deployment * @param validatorImpl The implementation address of the validator * @param immutableArgs The initialization data for the validator * @param creationSalt A unique salt for deterministic deployment * @param deployer The address that will deploy the validator * @return The predicted address where the validator will be deployed */ function _computeValidatorAddress( address validatorImpl, bytes calldata immutableArgs, bytes32 creationSalt, address deployer ) internal pure returns (address) { return validatorImpl.predictDeterministicAddressWithImmutableArgs( immutableArgs, creationSalt, deployer ); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol"; import {IValidation} from "./interfaces/IValidation.sol"; import {IStorage} from "./interfaces/IStorage.sol"; import {WalletCoreBase} from "./base/WalletCoreBase.sol"; import {WalletCoreLib} from "./lib/WalletCoreLib.sol"; import {Call} from "./Types.sol"; import {Errors} from "./lib/Errors.sol"; abstract contract ValidationLogic is IValidation, WalletCoreBase { using Clones for address; bytes32 private constant CALLS_TYPEHASH = keccak256("Calls(address wallet,uint256 nonce,bytes32[] calls)"); bytes32 private constant CALL_TYPEHASH = keccak256("Call(address target,uint256 value,bytes data)"); /** * @notice Modifier that validates a transaction using the specified validator * @dev Reads and updates the nonce from storage before validation * @param calls Array of calls to be validated * @param validator Address of the validator contract * @param validationData The validation data (signature for ECDSA, custom data for other validators) */ modifier onlyValidator( Call[] calldata calls, address validator, bytes calldata validationData ) { uint256 nonce = getMainStorage().readAndUpdateNonce(validator); _validateCall(nonce, calls, validator, validationData); _; } /** * @notice Adds a new validator contract to the wallet * @param validatorImpl The implementation address of the validator contract to be registered * @param immutableArgs Initialization data for the validator contract */ function _addValidator( address validatorImpl, bytes calldata immutableArgs ) internal { if (validatorImpl.code.length == 0) revert Errors.InvalidValidatorImpl(validatorImpl); // Fix creation salt bytes32 salt = WalletCoreLib.VALIDATOR_SALT; // Deploy using deterministic address address createdAddress = validatorImpl .cloneDeterministicWithImmutableArgs(immutableArgs, salt); getMainStorage().setValidatorStatus(createdAddress, true); // Initialize the validator emit ValidatorAdded(createdAddress); } /** * @notice Implements EIP-1271 signature validation standard * @dev Validates signatures by checking both the validator's signature and its authenticity * @dev The signature is bound to this wallet's address and the current chain ID * @param validator The address of the validator contract * @param _hash The hash of the data to be validated * @param signature ABI encoded (validator, signature) pair where: * - validator: address of the validator contract * - signature: the actual signature or validation data * @return bytes4 Returns MAGIC_VALUE (0x1626ba7e) if valid, INVALID_VALUE (0xffffffff) if invalid * @custom:security Verifies the validator is legitimate by checking its deterministic deployment */ function isValidSignature( address validator, bytes32 _hash, bytes calldata signature ) internal view returns (bool) { try getMainStorage().validateValidator(validator) {} catch { return false; } bytes32 boundHash = keccak256( abi.encode(bytes32(block.chainid), address(this), _hash) ); bytes32 digest = keccak256(abi.encodePacked("\x19\x01", boundHash)); return WalletCoreLib.validate(validator, digest, signature); } /** * @notice Generates an EIP-712 compliant typed data hash for transaction validation * @dev Combines the message hash with the domain separator using EIP-712 standard * @param nonce Current transaction nonce used to prevent replay attacks * @param calls Array of calls to be validated * @return bytes32 The EIP-712 typed data hash ready for signing */ function getValidationTypedHash( uint256 nonce, Call[] calldata calls ) public view returns (bytes32) { return _hashTypedDataV4(_getValidationHash(nonce, calls)); } /** * @notice Computes the deterministic address of a validator * @dev Uses the validator implementation and signer to calculate the expected address * @param validatorImpl The implementation contract address for the validator * @param immutableArgs The initialization code of the validator * @return address The predicted validator contract address */ function computeValidatorAddress( address validatorImpl, bytes calldata immutableArgs ) public view returns (address) { return WalletCoreLib._computeValidatorAddress( validatorImpl, immutableArgs, WalletCoreLib.VALIDATOR_SALT, address(this) ); } /** * @notice Internal function to validate a transaction using EIP-712 typed data * @dev Generates typed data hash and validates it using the specified validator * @param nonce Current transaction nonce from storage * @param calls Array of calls to be validated * @param validator Address of the validator contract * @param validationData The validation data (signature for ECDSA, custom data for other validators) */ function _validateCall( uint256 nonce, Call[] calldata calls, address validator, bytes calldata validationData ) internal view { bytes32 typedDataHash = getValidationTypedHash(nonce, calls); bool isValid = WalletCoreLib.validate( validator, typedDataHash, validationData ); if (!isValid) revert Errors.InvalidSignature(); } /** * @notice Creates a hash of the transaction data for validation * @dev Combines nonce and calls into a single hash using EIP-712 encoding * @param nonce Transaction nonce for replay protection * @param calls Array of calls to execute * @return bytes32 Hash of the transaction data */ function _getValidationHash( uint256 nonce, Call[] calldata calls ) internal view returns (bytes32) { bytes32[] memory callHashes = new bytes32[](calls.length); for (uint256 i = 0; i < calls.length; i++) { callHashes[i] = keccak256( abi.encode( CALL_TYPEHASH, calls[i].target, calls[i].value, keccak256(calls[i].data) ) ); } return keccak256( abi.encode( CALLS_TYPEHASH, _walletImplementation(), nonce, keccak256(abi.encode(callHashes)) ) ); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {Call} from "./Types.sol"; import {Errors} from "./lib/Errors.sol"; abstract contract ExecutionLogic { /** * @notice Executes multiple contract calls in a single transaction * @dev Reverts if any of the calls fail * @param calls Array of Call structs containing destination address, value, and calldata * @return results Array of bytes containing the return data from each call */ function _batchCall( Call[] calldata calls ) internal returns (bytes[] memory results) { results = new bytes[](calls.length); for (uint256 i; i < calls.length; i++) { (bool success, bytes memory returnData) = calls[i].target.call{ value: calls[i].value }(calls[i].data); if (!success) revert Errors.CallFailed(i, returnData); results[i] = returnData; } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {IExecutor} from "./interfaces/IExecutor.sol"; import {IHook} from "./interfaces/IHook.sol"; import {IStorage} from "./interfaces/IStorage.sol"; import {WalletCoreBase} from "./base/WalletCoreBase.sol"; import {WalletCoreLib} from "./lib/WalletCoreLib.sol"; import {Call, Session} from "./Types.sol"; import {Errors} from "./lib/Errors.sol"; abstract contract ExecutorLogic is IExecutor, WalletCoreBase { bytes32 public constant SESSION_TYPEHASH = keccak256( "Session(address wallet,uint256 id,address executor,address validator,uint256 validUntil,uint256 validAfter,bytes preHook,bytes postHook)" ); /** * @notice Restricts function access to the authorized executor with a valid session and executes hooks * @dev Performs two checks: * 1. Caller must match the session's executor * 2. Session must be valid (not expired, not invalidated) * @dev Hook address is extracted from first 20 bytes of hook data * @dev Remaining bytes are passed as hook parameters * @param session The session data containing executor permissions and hook configurations * @param calls Array of calls to be executed * @custom:hooks PreHook runs before execution, PostHook runs after with preHook return data */ modifier onlyValidSession(Session calldata session, Call[] calldata calls) { validateSession(session); bytes memory ret; if (session.preHook.length >= 20) ret = IHook(address(bytes20(session.preHook[:20]))).preCheck( calls, session.preHook[20:], msg.sender ); _; if (session.postHook.length >= 20) IHook(address(bytes20(session.postHook[:20]))).postCheck( ret, session.postHook[20:], msg.sender ); } /** * @notice Validates a session's time bounds, status, and signature * @dev Checks three conditions: * 1. Current time is within session's time bounds * 2. Session is not invalidated in storage * 3. Session signature is valid using specified validator * @param session The session data to validate */ function validateSession(Session calldata session) public view { // Check executor authorization if (msg.sender != session.executor) revert Errors.InvalidExecutor(); // Check time bounds if ( session.validAfter > block.timestamp || block.timestamp > session.validUntil ) revert Errors.InvalidSession(); // Check invalidSessionId & validValidator in storage getMainStorage().validateSession(session.id, session.validator); // Validate signature bytes32 hash = getSessionTypedHash(session); bool isValid = WalletCoreLib.validate( session.validator, hash, session.signature ); if (!isValid) revert Errors.InvalidSignature(); } /** * @notice Creates an EIP-712 typed data hash for session validation * @dev Combines session data with domain separator using EIP-712 standard * @param session The session data containing ID, executor, validator, time bounds, and hooks * @return bytes32 The EIP-712 compliant hash for signature verification */ function getSessionTypedHash( Session calldata session ) public view returns (bytes32) { return _hashTypedDataV4(_getSessionHash(session)); } /** * @notice Creates a hash of session parameters for EIP-712 struct hashing * @dev Packs session data with SESSION_TYPEHASH using keccak256 * @param session Session data * @return bytes32 The packed and hashed session data */ function _getSessionHash( Session calldata session ) internal view returns (bytes32) { return keccak256( abi.encode( SESSION_TYPEHASH, _walletImplementation(), session.id, session.executor, session.validator, session.validUntil, session.validAfter, keccak256(session.preHook), keccak256(session.postHook) ) ); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.23; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @dev Contract that handles token receiving functionality, implementing both IERC165 and IModule interfaces. * Supports ERC721 and ERC1155 token receiving through standard interfaces. */ abstract contract FallbackHandler is IERC165 { /** * @dev Allows the contract to receive ETH */ receive() external payable virtual {} /** * @dev Fallback function that handles token receiving callbacks * Returns the function selector for ERC721 and ERC1155 token receiving functions */ fallback() external payable { assembly { let s := shr(224, calldataload(0)) // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`. // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`. // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`. if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) { mstore(0x20, s) // Store `msg.sig`. return(0x3c, 0x20) // Return `msg.sig`. } } revert(); } /** * @dev Implementation of IERC165 interface detection * @param interfaceId The interface identifier to check * @return bool True if the contract supports the interface */ function supportsInterface( bytes4 interfaceId ) external view virtual override returns (bool) { // 0x150b7a02: `type(IERC721Receiver).interfaceId`. // 0x4e2312e0: `type(IERC1155Receiver).interfaceId`. // 0x1626ba7e: `type(IERC1271).interfaceId`. // 0x01ffc9a7: `type(IERC165).interfaceId`. return interfaceId == 0x150b7a02 || interfaceId == 0x4e2312e0 || interfaceId == 0x1626ba7e || interfaceId == 0x01ffc9a7; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; struct Call { address target; uint256 value; bytes data; } struct Session { uint256 id; address executor; address validator; uint256 validUntil; uint256 validAfter; bytes preHook; bytes postHook; bytes signature; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; library Errors { // Storage related error InvalidExecutor(); error InvalidSession(); error InvalidSessionId(); error InvalidOwner(); // Account related error NotFromSelf(); // Call related error CallFailed(uint256 index, bytes returnData); // ValidationLogic related error InvalidValidator(address validator); error InvalidValidatorImpl(address validatorImpl); // ECDSAValidator related error InvalidSignature(); // WalletCoreBase related error NameTooLong(); error VersionTooLong(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; interface IValidator { function validate( bytes32 msgHash, bytes calldata validationData ) external view; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {Call} from "../Types.sol"; interface IValidation { event ValidatorAdded(address validator); function getValidationTypedHash( uint256 nonce, Call[] calldata calls ) external view returns (bytes32); function computeValidatorAddress( address validatorImpl, bytes calldata immutableArgs ) external view returns (address); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {Session} from "src/Types.sol"; interface IExecutor { function getSessionTypedHash( Session calldata session ) external view returns (bytes32); function validateSession(Session calldata session) external view; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import {Call} from "src/Types.sol"; interface IHook { function preCheck( Call[] calldata calls, bytes calldata hookData, address executor ) external payable returns (bytes calldata preCheckRet); function postCheck( bytes calldata preCheckRet, bytes calldata hookData, address executor ) external payable; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
{ "remappings": [ "@openzeppelin/=node_modules/@openzeppelin/", "forge-std/=lib/forge-std/src/" ], "optimizer": { "enabled": true, "runs": 2000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "shanghai", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"mainStorageImpl","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"returnData","type":"bytes"}],"name":"CallFailed","type":"error"},{"inputs":[],"name":"CloneArgumentsTooLong","type":"error"},{"inputs":[],"name":"Create2EmptyBytecode","type":"error"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidExecutor","type":"error"},{"inputs":[],"name":"InvalidSession","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"}],"name":"InvalidValidatorImpl","type":"error"},{"inputs":[],"name":"NameTooLong","type":"error"},{"inputs":[],"name":"NotFromSelf","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"VersionTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"storageAddress","type":"address"}],"name":"StorageCreated","type":"event"},{"anonymous":false,"inputs":[],"name":"StorageInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"validator","type":"address"}],"name":"ValidatorAdded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"ADDRESS_THIS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAIN_STORAGE_IMPL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SESSION_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"},{"internalType":"bytes","name":"immutableArgs","type":"bytes"}],"name":"addValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"validatorImpl","type":"address"},{"internalType":"bytes","name":"immutableArgs","type":"bytes"}],"name":"computeValidatorAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"executeFromExecutor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"}],"name":"executeFromSelf","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"bytes","name":"validationData","type":"bytes"}],"name":"executeWithValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getMainStorage","outputs":[{"internalType":"contract IStorage","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"getSessionTypedHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nonce","type":"uint256"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"calls","type":"tuple[]"}],"name":"getValidationTypedHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"address","name":"validator","type":"address"},{"internalType":"uint256","name":"validUntil","type":"uint256"},{"internalType":"uint256","name":"validAfter","type":"uint256"},{"internalType":"bytes","name":"preHook","type":"bytes"},{"internalType":"bytes","name":"postHook","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct Session","name":"session","type":"tuple"}],"name":"validateSession","outputs":[],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6101a060405234801562000011575f80fd5b5060405162002a3938038062002a39833981016040819052620000349162000292565b818162000042825f62000149565b610120526200005381600162000149565b61014052815160208084019190912060e052815190820120610100524660a052620000e060e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c05281516020116200010c5760405163680b6caf60e01b815260040160405180910390fd5b60208151106200012f5760405163f939794f60e01b815260040160405180910390fd5b505030610160526001600160a01b031661018052620004c4565b5f6020835110156200016857620001608362000181565b90506200017b565b81620001758482620003a0565b5060ff90505b92915050565b5f80829050601f81511115620001b7578260405163305a27a960e01b8152600401620001ae91906200046c565b60405180910390fd5b8051620001c482620004a0565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f5b83811015620001fc578181015183820152602001620001e2565b50505f910152565b5f82601f83011262000214575f80fd5b81516001600160401b0380821115620002315762000231620001cc565b604051601f8301601f19908116603f011681019082821181831017156200025c576200025c620001cc565b8160405283815286602085880101111562000275575f80fd5b62000288846020830160208901620001e0565b9695505050505050565b5f805f60608486031215620002a5575f80fd5b83516001600160a01b0381168114620002bc575f80fd5b60208501519093506001600160401b0380821115620002d9575f80fd5b620002e78783880162000204565b93506040860151915080821115620002fd575f80fd5b506200030c8682870162000204565b9150509250925092565b600181811c908216806200032b57607f821691505b6020821081036200034a57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156200039b57805f5260205f20601f840160051c81016020851015620003775750805b601f840160051c820191505b8181101562000398575f815560010162000383565b50505b505050565b81516001600160401b03811115620003bc57620003bc620001cc565b620003d481620003cd845462000316565b8462000350565b602080601f8311600181146200040a575f8415620003f25750858301515b5f19600386901b1c1916600185901b17855562000464565b5f85815260208120601f198616915b828110156200043a5788860151825594840194600190910190840162000419565b50858210156200045857878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b602081525f82518060208401526200048c816040850160208701620001e0565b601f01601f19169190910160400192915050565b805160208083015191908110156200034a575f1960209190910360031b1b16919050565b60805160a05160c05160e05161010051610120516101405161016051610180516124ec6200054d5f395f8181610171015281816104a6015281816108e901526109b401525f8181610340015281816111fd015261151301525f61134b01525f61131f01525f611a2e01525f611a0601525f61196101525f61198b01525f6119b501526124ec5ff3fe6080604052600436106100f6575f3560e01c80638129fc1c11610089578063b964fb2511610058578063b964fb2514610310578063cc025f7c1461032f578063e35dd03b14610362578063fcfbd33a14610381576100fd565b80638129fc1c1461028357806384b0196e1461029757806387b61fdd146102be578063893aa9f6146102f1576100fd565b80631626ba7e116100c55780631626ba7e146101e0578063270b4e66146102185780634da6d8e51461023757806352828a9314610256576100fd565b806301ffc9a71461012c578063046434271461016057806305e3ea13146101ab578063076cd7b0146101cc576100fd565b366100fd57005b5f3560e01c63bc197c81811463f23a6e6182141763150b7a028214171561012857806020526020603cf35b5f80fd5b348015610137575f80fd5b5061014b610146366004611bda565b6103a0565b60405190151581526020015b60405180910390f35b34801561016b575f80fd5b506101937f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610157565b3480156101b6575f80fd5b506101ca6101c5366004611c61565b610457565b005b3480156101d7575f80fd5b506101936104a0565b3480156101eb575f80fd5b506101ff6101fa366004611cb0565b6104cf565b6040516001600160e01b03199091168152602001610157565b348015610223575f80fd5b506101ca610232366004611cf6565b6105ac565b348015610242575f80fd5b506101ca610251366004611d69565b61073f565b348015610261575f80fd5b50610275610270366004611cf6565b6108d2565b604051908152602001610157565b34801561028e575f80fd5b506101ca6108e4565b3480156102a2575f80fd5b506102ab610a2e565b6040516101579796959493929190611e1a565b3480156102c9575f80fd5b506102757f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f047281565b3480156102fc575f80fd5b506101ca61030b366004611ecd565b610a8c565b34801561031b575f80fd5b5061027561032a366004611f0c565b610acf565b34801561033a575f80fd5b506101937f000000000000000000000000000000000000000000000000000000000000000081565b34801561036d575f80fd5b5061019361037c366004611c61565b610ade565b34801561038c575f80fd5b506101ca61039b366004611f47565b610b34565b5f7f150b7a02000000000000000000000000000000000000000000000000000000006001600160e01b03198316148061040257507f4e2312e0000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b8061041d5750630b135d3f60e11b6001600160e01b03198316145b8061045157507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b333014610490576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b838383610bee565b505050565b5f6104ca7f0000000000000000000000000000000000000000000000000000000000000000610d98565b905090565b5f6041829003610540575f6105198585858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610e0e92505050565b5090915050306001600160a01b0382160361053e5750630b135d3f60e11b90506105a5565b505b601482101561055857506001600160e01b03196105a5565b61058761056860145f8587611fc5565b61057191611fec565b60601c856105828560148189611fc5565b610e57565b610599576001600160e01b03196105a2565b630b135d3f60e11b5b90505b9392505050565b6105bc6040820160208301612021565b6001600160a01b0316336001600160a01b031614610606576040517f710c949700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b428160800135118061061b5750806060013542115b15610652576040517f2def1a7600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61065a6104a0565b6001600160a01b0316639a8d38ba823561067a6060850160408601612021565b6040516001600160e01b031960e085901b16815260048101929092526001600160a01b031660248201526044015f6040518083038186803b1580156106bd575f80fd5b505afa1580156106cf573d5f803e3d5ffd5b505050505f6106dd826108d2565b90505f6107066106f36060850160408601612021565b8361070160e087018761203a565b610f65565b90508061049b576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80838361074b836105ac565b6060601461075c60a086018661203a565b9050106108125761077060a085018561203a565b61077e916014915f91611fc5565b61078791611fec565b60601c630a386c0f848461079e60a089018961203a565b6107ac916014908290611fc5565b336040518663ffffffff1660e01b81526004016107cd9594939291906120a6565b5f604051808303815f875af11580156107e8573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261080f91908101906121d3565b90505b61081c878761102b565b50601461082c60c086018661203a565b9050106108c95761084060c085018561203a565b61084e916014915f91611fc5565b61085791611fec565b60601c63604401f38261086d60c088018861203a565b61087b916014908290611fc5565b336040518563ffffffff1660e01b815260040161089b949392919061227b565b5f604051808303815f87803b1580156108b2575f80fd5b505af11580156108c4573d5f803e3d5ffd5b505050505b50505050505050565b5f6104516108df836111d9565b611301565b61090d7f0000000000000000000000000000000000000000000000000000000000000000610d98565b6001600160a01b03163b15610946576040517f5fa50fa13b73db6e10ca2d79663379478c78fca79e62c921d00811e7adf73533905f90a1565b604080513060208201525f910160405160208183030381529060405290505f6109eb8260405160200161099c907f73746f7261676500000000000000000000000000000000000000000000000000815260070190565b604051602081830303815290604052805190602001207f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031661130b9092919063ffffffff16565b6040516001600160a01b03821681529091507f6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f54119060200160405180910390a15050565b5f6060805f805f6060610a3f611318565b610a47611344565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b333014610ac5576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b828261102b565b5f6105a26108df858585611371565b5f6105a2848484604051602001610b18907f76616c696461746f720000000000000000000000000000000000000000000000815260090190565b60405160208183030381529060405280519060200120306115ac565b84848484845f610b426104a0565b6040517f1485540f0000000000000000000000000000000000000000000000000000000081526001600160a01b0386811660048301529190911690631485540f906024016020604051808303815f875af1158015610ba2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc691906122bb565b9050610bd6818787878787611602565b610be08b8b61102b565b505050505050505050505050565b826001600160a01b03163b5f03610c41576040517f5b4cda160000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024015b60405180910390fd5b6040517f76616c696461746f72000000000000000000000000000000000000000000000060208201525f906029016040516020818303038152906040528051906020012090505f610cd284848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0388169190508461130b565b9050610cdc6104a0565b6040517faca2490b0000000000000000000000000000000000000000000000000000000081526001600160a01b03838116600483015260016024830152919091169063aca2490b906044015f604051808303815f87803b158015610d3e575f80fd5b505af1158015610d50573d5f803e3d5ffd5b50506040516001600160a01b03841681527fe366c1c0452ed8eec96861e9e54141ebff23c9ec89fe27b996b45f5ec38849879250602001905060405180910390a15050505050565b604080513060208201525f91610451910160408051601f19818403018152908290527f73746f726167650000000000000000000000000000000000000000000000000060208301529060270160408051601f1981840301815291905280516020909101206001600160a01b038516919030611660565b5f805f8351604103610e45576020840151604085015160608601515f1a610e3788828585611680565b955095509550505050610e50565b505081515f91506002905b9250925092565b5f610e606104a0565b6040517f4cf6ff040000000000000000000000000000000000000000000000000000000081526001600160a01b0387811660048301529190911690634cf6ff04906024015f6040518083038186803b158015610eba575f80fd5b505afa925050508015610ecb575060015b610ed657505f610f5d565b604080514660208083019190915230828401526060808301889052835180840390910181526080830184528051908201207f190100000000000000000000000000000000000000000000000000000000000060a084015260a28084018290528451808503909101815260c29093019093528151910120610f5887828787610f65565b925050505b949350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03861601610fa857610fa1848484611748565b9050610f5d565b6040517f65a8613c0000000000000000000000000000000000000000000000000000000081526001600160a01b038616906365a8613c90610ff1908790879087906004016122d2565b5f6040518083038186803b158015611007575f80fd5b505afa925050508015611018575060015b61102357505f610f5d565b506001610f5d565b60608167ffffffffffffffff811115611046576110466121bf565b60405190808252806020026020018201604052801561107957816020015b60608152602001906001900390816110645790505b5090505f5b828110156111d2575f8085858481811061109a5761109a6122f4565b90506020028101906110ac9190612308565b6110ba906020810190612021565b6001600160a01b03168686858181106110d5576110d56122f4565b90506020028101906110e79190612308565b602001358787868181106110fd576110fd6122f4565b905060200281019061110f9190612308565b61111d90604081019061203a565b60405161112b929190612326565b5f6040518083038185875af1925050503d805f8114611165576040519150601f19603f3d011682016040523d82523d5f602084013e61116a565b606091505b5091509150816111aa5782816040517f5c0dee5d000000000000000000000000000000000000000000000000000000008152600401610c38929190612335565b808484815181106111bd576111bd6122f4565b6020908102919091010152505060010161107e565b5092915050565b5f7f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f04727f0000000000000000000000000000000000000000000000000000000000000000833561122e6040860160208701612021565b61123e6060870160408801612021565b6060870135608088013561125560a08a018a61203a565b604051611263929190612326565b60405190819003902061127960c08b018b61203a565b604051611287929190612326565b60408051918290038220602083019a909a526001600160a01b0398891690820152606081019690965293861660808601529490911660a084015260c083015260e082019290925261010081019190915261012081019190915261014001604051602081830303815290604052805190602001209050919050565b5f610451826117a2565b5f6105a28484845f6117e9565b60606104ca7f00000000000000000000000000000000000000000000000000000000000000005f611802565b60606104ca7f00000000000000000000000000000000000000000000000000000000000000006001611802565b5f808267ffffffffffffffff81111561138c5761138c6121bf565b6040519080825280602002602001820160405280156113b5578160200160208202803683370190505b5090505f5b838110156114ef577f84fa2cf05cd88e992eae77e851af68a4ee278dcff6ef504e487a55b3baadfbe58585838181106113f5576113f56122f4565b90506020028101906114079190612308565b611415906020810190612021565b868684818110611427576114276122f4565b90506020028101906114399190612308565b6020013587878581811061144f5761144f6122f4565b90506020028101906114619190612308565b61146f90604081019061203a565b60405161147d929190612326565b6040519081900381206114b4949392916020019384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001208282815181106114dc576114dc6122f4565b60209081029190910101526001016113ba565b507ff1706fcb981702148f7e85153257c9d3863f62998c5504ab0b94172a9e1dacfd7f00000000000000000000000000000000000000000000000000000000000000008683604051602001611544919061234d565b6040516020818303038152906040528051906020012060405160200161158c94939291909384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001209150509392505050565b5f6115f885858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0389169190508585611660565b9695505050505050565b5f61160e878787610acf565b90505f61161d85838686610f65565b905080611656576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050505050565b5f8061166c86866118ac565b90506115f884828051906020012085611923565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156116b957505f9150600390508261173e565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561170a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b03811661173557505f92506001915082905061173e565b92505f91508190505b9450945094915050565b5f8061178b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508993925050610e0e9050565b50506001600160a01b031630149150509392505050565b5f6104516117ae611955565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f806117f586866118ac565b90506115f8838583611a7e565b606060ff831461181c5761181583611b5d565b9050610451565b81805461182890612390565b80601f016020809104026020016040519081016040528092919081815260200182805461185490612390565b801561189f5780601f106118765761010080835404028352916020019161189f565b820191905f5260205f20905b81548152906001019060200180831161188257829003601f168201915b5050505050905092915050565b6060615fd3825111156118eb576040517f9428905400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81516118f890602d6123c2565b838360405160200161190c939291906123e1565b604051602081830303815290604052905092915050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156119ad57507f000000000000000000000000000000000000000000000000000000000000000046145b156119d757507f000000000000000000000000000000000000000000000000000000000000000090565b6104ca604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f83471015611ac2576040517fcf47918100000000000000000000000000000000000000000000000000000000815247600482015260248101859052604401610c38565b81515f03611afc576040517f4ca249dc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8282516020840186f590503d151981151615611b1d576040513d5f823e3d81fd5b6001600160a01b0381166105a5576040517fb06ebf3d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60605f611b6983611b9a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610451576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215611bea575f80fd5b81356001600160e01b0319811681146105a5575f80fd5b80356001600160a01b0381168114611c17575f80fd5b919050565b5f8083601f840112611c2c575f80fd5b50813567ffffffffffffffff811115611c43575f80fd5b602083019150836020828501011115611c5a575f80fd5b9250929050565b5f805f60408486031215611c73575f80fd5b611c7c84611c01565b9250602084013567ffffffffffffffff811115611c97575f80fd5b611ca386828701611c1c565b9497909650939450505050565b5f805f60408486031215611cc2575f80fd5b83359250602084013567ffffffffffffffff811115611c97575f80fd5b5f6101008284031215611cf0575f80fd5b50919050565b5f60208284031215611d06575f80fd5b813567ffffffffffffffff811115611d1c575f80fd5b610f5d84828501611cdf565b5f8083601f840112611d38575f80fd5b50813567ffffffffffffffff811115611d4f575f80fd5b6020830191508360208260051b8501011115611c5a575f80fd5b5f805f60408486031215611d7b575f80fd5b833567ffffffffffffffff80821115611d92575f80fd5b611d9e87838801611d28565b90955093506020860135915080821115611db6575f80fd5b50611dc386828701611cdf565b9150509250925092565b5f5b83811015611de7578181015183820152602001611dcf565b50505f910152565b5f8151808452611e06816020860160208601611dcd565b601f01601f19169290920160200192915050565b7fff00000000000000000000000000000000000000000000000000000000000000881681525f602060e06020840152611e5660e084018a611def565b8381036040850152611e68818a611def565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015611ebb57835183529284019291840191600101611e9f565b50909c9b505050505050505050505050565b5f8060208385031215611ede575f80fd5b823567ffffffffffffffff811115611ef4575f80fd5b611f0085828601611d28565b90969095509350505050565b5f805f60408486031215611f1e575f80fd5b83359250602084013567ffffffffffffffff811115611f3b575f80fd5b611ca386828701611d28565b5f805f805f60608688031215611f5b575f80fd5b853567ffffffffffffffff80821115611f72575f80fd5b611f7e89838a01611d28565b9097509550859150611f9260208901611c01565b94506040880135915080821115611fa7575f80fd5b50611fb488828901611c1c565b969995985093965092949392505050565b5f8085851115611fd3575f80fd5b83861115611fdf575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156120195780818660140360031b1b83161692505b505092915050565b5f60208284031215612031575f80fd5b6105a582611c01565b5f808335601e1984360301811261204f575f80fd5b83018035915067ffffffffffffffff821115612069575f80fd5b602001915036819003821315611c5a575f80fd5b81835281816020850137505f602082840101525f6020601f19601f840116840101905092915050565b60608082528181018690525f906080600588901b8401810190840189845b8a811015612190577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808785030183528135605e198d3603018112612106575f80fd5b8c016001600160a01b0361211982611c01565b16855260208082013581870152604080830135601e1984360301811261213d575f80fd5b90920181810192903567ffffffffffffffff81111561215a575f80fd5b803603841315612168575f80fd5b888289015261217a898901828661207d565b97505050938401939290920191506001016120c4565b50505083810360208501526121a681878961207d565b925050506115f860408301846001600160a01b03169052565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156121e3575f80fd5b815167ffffffffffffffff808211156121fa575f80fd5b818401915084601f83011261220d575f80fd5b81518181111561221f5761221f6121bf565b604051601f8201601f19908116603f01168101908382118183101715612247576122476121bf565b8160405282815287602084870101111561225f575f80fd5b612270836020830160208801611dcd565b979650505050505050565b606081525f61228d6060830187611def565b82810360208401526122a081868861207d565b9150506001600160a01b038316604083015295945050505050565b5f602082840312156122cb575f80fd5b5051919050565b838152604060208201525f6122eb60408301848661207d565b95945050505050565b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261231c575f80fd5b9190910192915050565b818382375f9101908152919050565b828152604060208201525f6105a26040830184611def565b602080825282518282018190525f9190848201906040850190845b8181101561238457835183529284019291840191600101612368565b50909695505050505050565b600181811c908216806123a457607f821691505b602082108103611cf057634e487b7160e01b5f52602260045260245ffd5b8082018082111561045157634e487b7160e01b5f52601160045260245ffd5b7f610000000000000000000000000000000000000000000000000000000000000081527fffff0000000000000000000000000000000000000000000000000000000000008460f01b1660018201527f3d81600a3d39f3363d3d373d3d3d363d7300000000000000000000000000000060038201526bffffffffffffffffffffffff198360601b1660148201527f5af43d82803e903d91602b57fd5bf3000000000000000000000000000000000060288201525f82516124a7816037850160208701611dcd565b9190910160370194935050505056fea2646970667358221220c92c47531d832aef2d67f1d05c61a484be1b86fcbf050ecd638cc408d1e32a2964736f6c634300081700330000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000b77616c6c65742d636f72650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005312e302e30000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080604052600436106100f6575f3560e01c80638129fc1c11610089578063b964fb2511610058578063b964fb2514610310578063cc025f7c1461032f578063e35dd03b14610362578063fcfbd33a14610381576100fd565b80638129fc1c1461028357806384b0196e1461029757806387b61fdd146102be578063893aa9f6146102f1576100fd565b80631626ba7e116100c55780631626ba7e146101e0578063270b4e66146102185780634da6d8e51461023757806352828a9314610256576100fd565b806301ffc9a71461012c578063046434271461016057806305e3ea13146101ab578063076cd7b0146101cc576100fd565b366100fd57005b5f3560e01c63bc197c81811463f23a6e6182141763150b7a028214171561012857806020526020603cf35b5f80fd5b348015610137575f80fd5b5061014b610146366004611bda565b6103a0565b60405190151581526020015b60405180910390f35b34801561016b575f80fd5b506101937f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d3081565b6040516001600160a01b039091168152602001610157565b3480156101b6575f80fd5b506101ca6101c5366004611c61565b610457565b005b3480156101d7575f80fd5b506101936104a0565b3480156101eb575f80fd5b506101ff6101fa366004611cb0565b6104cf565b6040516001600160e01b03199091168152602001610157565b348015610223575f80fd5b506101ca610232366004611cf6565b6105ac565b348015610242575f80fd5b506101ca610251366004611d69565b61073f565b348015610261575f80fd5b50610275610270366004611cf6565b6108d2565b604051908152602001610157565b34801561028e575f80fd5b506101ca6108e4565b3480156102a2575f80fd5b506102ab610a2e565b6040516101579796959493929190611e1a565b3480156102c9575f80fd5b506102757f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f047281565b3480156102fc575f80fd5b506101ca61030b366004611ecd565b610a8c565b34801561031b575f80fd5b5061027561032a366004611f0c565b610acf565b34801561033a575f80fd5b506101937f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb81565b34801561036d575f80fd5b5061019361037c366004611c61565b610ade565b34801561038c575f80fd5b506101ca61039b366004611f47565b610b34565b5f7f150b7a02000000000000000000000000000000000000000000000000000000006001600160e01b03198316148061040257507f4e2312e0000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b8061041d5750630b135d3f60e11b6001600160e01b03198316145b8061045157507f01ffc9a7000000000000000000000000000000000000000000000000000000006001600160e01b03198316145b92915050565b333014610490576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b838383610bee565b505050565b5f6104ca7f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30610d98565b905090565b5f6041829003610540575f6105198585858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610e0e92505050565b5090915050306001600160a01b0382160361053e5750630b135d3f60e11b90506105a5565b505b601482101561055857506001600160e01b03196105a5565b61058761056860145f8587611fc5565b61057191611fec565b60601c856105828560148189611fc5565b610e57565b610599576001600160e01b03196105a2565b630b135d3f60e11b5b90505b9392505050565b6105bc6040820160208301612021565b6001600160a01b0316336001600160a01b031614610606576040517f710c949700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b428160800135118061061b5750806060013542115b15610652576040517f2def1a7600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61065a6104a0565b6001600160a01b0316639a8d38ba823561067a6060850160408601612021565b6040516001600160e01b031960e085901b16815260048101929092526001600160a01b031660248201526044015f6040518083038186803b1580156106bd575f80fd5b505afa1580156106cf573d5f803e3d5ffd5b505050505f6106dd826108d2565b90505f6107066106f36060850160408601612021565b8361070160e087018761203a565b610f65565b90508061049b576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80838361074b836105ac565b6060601461075c60a086018661203a565b9050106108125761077060a085018561203a565b61077e916014915f91611fc5565b61078791611fec565b60601c630a386c0f848461079e60a089018961203a565b6107ac916014908290611fc5565b336040518663ffffffff1660e01b81526004016107cd9594939291906120a6565b5f604051808303815f875af11580156107e8573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261080f91908101906121d3565b90505b61081c878761102b565b50601461082c60c086018661203a565b9050106108c95761084060c085018561203a565b61084e916014915f91611fc5565b61085791611fec565b60601c63604401f38261086d60c088018861203a565b61087b916014908290611fc5565b336040518563ffffffff1660e01b815260040161089b949392919061227b565b5f604051808303815f87803b1580156108b2575f80fd5b505af11580156108c4573d5f803e3d5ffd5b505050505b50505050505050565b5f6104516108df836111d9565b611301565b61090d7f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30610d98565b6001600160a01b03163b15610946576040517f5fa50fa13b73db6e10ca2d79663379478c78fca79e62c921d00811e7adf73533905f90a1565b604080513060208201525f910160405160208183030381529060405290505f6109eb8260405160200161099c907f73746f7261676500000000000000000000000000000000000000000000000000815260070190565b604051602081830303815290604052805190602001207f0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d306001600160a01b031661130b9092919063ffffffff16565b6040516001600160a01b03821681529091507f6c9d76c1677b0909ce573fabdda9f1bbbc891f981a7efa98415bdcd0ff9f54119060200160405180910390a15050565b5f6060805f805f6060610a3f611318565b610a47611344565b604080515f808252602082019092527f0f000000000000000000000000000000000000000000000000000000000000009b939a50919850469750309650945092509050565b333014610ac5576040517fa575ba1c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61049b828261102b565b5f6105a26108df858585611371565b5f6105a2848484604051602001610b18907f76616c696461746f720000000000000000000000000000000000000000000000815260090190565b60405160208183030381529060405280519060200120306115ac565b84848484845f610b426104a0565b6040517f1485540f0000000000000000000000000000000000000000000000000000000081526001600160a01b0386811660048301529190911690631485540f906024016020604051808303815f875af1158015610ba2573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc691906122bb565b9050610bd6818787878787611602565b610be08b8b61102b565b505050505050505050505050565b826001600160a01b03163b5f03610c41576040517f5b4cda160000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024015b60405180910390fd5b6040517f76616c696461746f72000000000000000000000000000000000000000000000060208201525f906029016040516020818303038152906040528051906020012090505f610cd284848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0388169190508461130b565b9050610cdc6104a0565b6040517faca2490b0000000000000000000000000000000000000000000000000000000081526001600160a01b03838116600483015260016024830152919091169063aca2490b906044015f604051808303815f87803b158015610d3e575f80fd5b505af1158015610d50573d5f803e3d5ffd5b50506040516001600160a01b03841681527fe366c1c0452ed8eec96861e9e54141ebff23c9ec89fe27b996b45f5ec38849879250602001905060405180910390a15050505050565b604080513060208201525f91610451910160408051601f19818403018152908290527f73746f726167650000000000000000000000000000000000000000000000000060208301529060270160408051601f1981840301815291905280516020909101206001600160a01b038516919030611660565b5f805f8351604103610e45576020840151604085015160608601515f1a610e3788828585611680565b955095509550505050610e50565b505081515f91506002905b9250925092565b5f610e606104a0565b6040517f4cf6ff040000000000000000000000000000000000000000000000000000000081526001600160a01b0387811660048301529190911690634cf6ff04906024015f6040518083038186803b158015610eba575f80fd5b505afa925050508015610ecb575060015b610ed657505f610f5d565b604080514660208083019190915230828401526060808301889052835180840390910181526080830184528051908201207f190100000000000000000000000000000000000000000000000000000000000060a084015260a28084018290528451808503909101815260c29093019093528151910120610f5887828787610f65565b925050505b949350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03861601610fa857610fa1848484611748565b9050610f5d565b6040517f65a8613c0000000000000000000000000000000000000000000000000000000081526001600160a01b038616906365a8613c90610ff1908790879087906004016122d2565b5f6040518083038186803b158015611007575f80fd5b505afa925050508015611018575060015b61102357505f610f5d565b506001610f5d565b60608167ffffffffffffffff811115611046576110466121bf565b60405190808252806020026020018201604052801561107957816020015b60608152602001906001900390816110645790505b5090505f5b828110156111d2575f8085858481811061109a5761109a6122f4565b90506020028101906110ac9190612308565b6110ba906020810190612021565b6001600160a01b03168686858181106110d5576110d56122f4565b90506020028101906110e79190612308565b602001358787868181106110fd576110fd6122f4565b905060200281019061110f9190612308565b61111d90604081019061203a565b60405161112b929190612326565b5f6040518083038185875af1925050503d805f8114611165576040519150601f19603f3d011682016040523d82523d5f602084013e61116a565b606091505b5091509150816111aa5782816040517f5c0dee5d000000000000000000000000000000000000000000000000000000008152600401610c38929190612335565b808484815181106111bd576111bd6122f4565b6020908102919091010152505060010161107e565b5092915050565b5f7f162b80b4d2b49568d8cbb7ac5385094c9e5e14680ef0333beeddbfae562f04727f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb833561122e6040860160208701612021565b61123e6060870160408801612021565b6060870135608088013561125560a08a018a61203a565b604051611263929190612326565b60405190819003902061127960c08b018b61203a565b604051611287929190612326565b60408051918290038220602083019a909a526001600160a01b0398891690820152606081019690965293861660808601529490911660a084015260c083015260e082019290925261010081019190915261012081019190915261014001604051602081830303815290604052805190602001209050919050565b5f610451826117a2565b5f6105a28484845f6117e9565b60606104ca7f77616c6c65742d636f726500000000000000000000000000000000000000000b5f611802565b60606104ca7f312e302e300000000000000000000000000000000000000000000000000000056001611802565b5f808267ffffffffffffffff81111561138c5761138c6121bf565b6040519080825280602002602001820160405280156113b5578160200160208202803683370190505b5090505f5b838110156114ef577f84fa2cf05cd88e992eae77e851af68a4ee278dcff6ef504e487a55b3baadfbe58585838181106113f5576113f56122f4565b90506020028101906114079190612308565b611415906020810190612021565b868684818110611427576114276122f4565b90506020028101906114399190612308565b6020013587878581811061144f5761144f6122f4565b90506020028101906114619190612308565b61146f90604081019061203a565b60405161147d929190612326565b6040519081900381206114b4949392916020019384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001208282815181106114dc576114dc6122f4565b60209081029190910101526001016113ba565b507ff1706fcb981702148f7e85153257c9d3863f62998c5504ab0b94172a9e1dacfd7f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb8683604051602001611544919061234d565b6040516020818303038152906040528051906020012060405160200161158c94939291909384526001600160a01b039290921660208401526040830152606082015260800190565b604051602081830303815290604052805190602001209150509392505050565b5f6115f885858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525050506001600160a01b0389169190508585611660565b9695505050505050565b5f61160e878787610acf565b90505f61161d85838686610f65565b905080611656576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050505050565b5f8061166c86866118ac565b90506115f884828051906020012085611923565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156116b957505f9150600390508261173e565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa15801561170a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b03811661173557505f92506001915082905061173e565b92505f91508190505b9450945094915050565b5f8061178b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508993925050610e0e9050565b50506001600160a01b031630149150509392505050565b5f6104516117ae611955565b836040517f19010000000000000000000000000000000000000000000000000000000000008152600281019290925260228201526042902090565b5f806117f586866118ac565b90506115f8838583611a7e565b606060ff831461181c5761181583611b5d565b9050610451565b81805461182890612390565b80601f016020809104026020016040519081016040528092919081815260200182805461185490612390565b801561189f5780601f106118765761010080835404028352916020019161189f565b820191905f5260205f20905b81548152906001019060200180831161188257829003601f168201915b5050505050905092915050565b6060615fd3825111156118eb576040517f9428905400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b81516118f890602d6123c2565b838360405160200161190c939291906123e1565b604051602081830303815290604052905092915050565b5f604051836040820152846020820152828152600b8101905060ff8153605590206001600160a01b0316949350505050565b5f306001600160a01b037f00000000000000000000000080296ff8d1ed46f8e3c7992664d13b833504c2bb161480156119ad57507f000000000000000000000000000000000000000000000000000000000000000146145b156119d757507f69edb7f69124e4ceaeaa34c2e15f8d8629f6d43ee6563613581e67efc329c05290565b6104ca604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f3a6a311c4f8ac232d0113c7c5ead9364db4fbb8887d940d7ba5c142d45d6acfb918101919091527f06c015bd22b4c69690933c1058878ebdfef31f9aaae40bbe86d8a09fe1b2972c60608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b5f83471015611ac2576040517fcf47918100000000000000000000000000000000000000000000000000000000815247600482015260248101859052604401610c38565b81515f03611afc576040517f4ca249dc00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8282516020840186f590503d151981151615611b1d576040513d5f823e3d81fd5b6001600160a01b0381166105a5576040517fb06ebf3d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60605f611b6983611b9a565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f811115610451576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215611bea575f80fd5b81356001600160e01b0319811681146105a5575f80fd5b80356001600160a01b0381168114611c17575f80fd5b919050565b5f8083601f840112611c2c575f80fd5b50813567ffffffffffffffff811115611c43575f80fd5b602083019150836020828501011115611c5a575f80fd5b9250929050565b5f805f60408486031215611c73575f80fd5b611c7c84611c01565b9250602084013567ffffffffffffffff811115611c97575f80fd5b611ca386828701611c1c565b9497909650939450505050565b5f805f60408486031215611cc2575f80fd5b83359250602084013567ffffffffffffffff811115611c97575f80fd5b5f6101008284031215611cf0575f80fd5b50919050565b5f60208284031215611d06575f80fd5b813567ffffffffffffffff811115611d1c575f80fd5b610f5d84828501611cdf565b5f8083601f840112611d38575f80fd5b50813567ffffffffffffffff811115611d4f575f80fd5b6020830191508360208260051b8501011115611c5a575f80fd5b5f805f60408486031215611d7b575f80fd5b833567ffffffffffffffff80821115611d92575f80fd5b611d9e87838801611d28565b90955093506020860135915080821115611db6575f80fd5b50611dc386828701611cdf565b9150509250925092565b5f5b83811015611de7578181015183820152602001611dcf565b50505f910152565b5f8151808452611e06816020860160208601611dcd565b601f01601f19169290920160200192915050565b7fff00000000000000000000000000000000000000000000000000000000000000881681525f602060e06020840152611e5660e084018a611def565b8381036040850152611e68818a611def565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825260208088019350909101905f5b81811015611ebb57835183529284019291840191600101611e9f565b50909c9b505050505050505050505050565b5f8060208385031215611ede575f80fd5b823567ffffffffffffffff811115611ef4575f80fd5b611f0085828601611d28565b90969095509350505050565b5f805f60408486031215611f1e575f80fd5b83359250602084013567ffffffffffffffff811115611f3b575f80fd5b611ca386828701611d28565b5f805f805f60608688031215611f5b575f80fd5b853567ffffffffffffffff80821115611f72575f80fd5b611f7e89838a01611d28565b9097509550859150611f9260208901611c01565b94506040880135915080821115611fa7575f80fd5b50611fb488828901611c1c565b969995985093965092949392505050565b5f8085851115611fd3575f80fd5b83861115611fdf575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156120195780818660140360031b1b83161692505b505092915050565b5f60208284031215612031575f80fd5b6105a582611c01565b5f808335601e1984360301811261204f575f80fd5b83018035915067ffffffffffffffff821115612069575f80fd5b602001915036819003821315611c5a575f80fd5b81835281816020850137505f602082840101525f6020601f19601f840116840101905092915050565b60608082528181018690525f906080600588901b8401810190840189845b8a811015612190577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808785030183528135605e198d3603018112612106575f80fd5b8c016001600160a01b0361211982611c01565b16855260208082013581870152604080830135601e1984360301811261213d575f80fd5b90920181810192903567ffffffffffffffff81111561215a575f80fd5b803603841315612168575f80fd5b888289015261217a898901828661207d565b97505050938401939290920191506001016120c4565b50505083810360208501526121a681878961207d565b925050506115f860408301846001600160a01b03169052565b634e487b7160e01b5f52604160045260245ffd5b5f602082840312156121e3575f80fd5b815167ffffffffffffffff808211156121fa575f80fd5b818401915084601f83011261220d575f80fd5b81518181111561221f5761221f6121bf565b604051601f8201601f19908116603f01168101908382118183101715612247576122476121bf565b8160405282815287602084870101111561225f575f80fd5b612270836020830160208801611dcd565b979650505050505050565b606081525f61228d6060830187611def565b82810360208401526122a081868861207d565b9150506001600160a01b038316604083015295945050505050565b5f602082840312156122cb575f80fd5b5051919050565b838152604060208201525f6122eb60408301848661207d565b95945050505050565b634e487b7160e01b5f52603260045260245ffd5b5f8235605e1983360301811261231c575f80fd5b9190910192915050565b818382375f9101908152919050565b828152604060208201525f6105a26040830184611def565b602080825282518282018190525f9190848201906040850190845b8181101561238457835183529284019291840191600101612368565b50909695505050505050565b600181811c908216806123a457607f821691505b602082108103611cf057634e487b7160e01b5f52602260045260245ffd5b8082018082111561045157634e487b7160e01b5f52601160045260245ffd5b7f610000000000000000000000000000000000000000000000000000000000000081527fffff0000000000000000000000000000000000000000000000000000000000008460f01b1660018201527f3d81600a3d39f3363d3d373d3d3d363d7300000000000000000000000000000060038201526bffffffffffffffffffffffff198360601b1660148201527f5af43d82803e903d91602b57fd5bf3000000000000000000000000000000000060288201525f82516124a7816037850160208701611dcd565b9190910160370194935050505056fea2646970667358221220c92c47531d832aef2d67f1d05c61a484be1b86fcbf050ecd638cc408d1e32a2964736f6c63430008170033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000000b77616c6c65742d636f72650000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005312e302e30000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : mainStorageImpl (address): 0x7DAF91DFe55FcAb363416A6E3bceb3Da34ff1d30
Arg [1] : name (string): wallet-core
Arg [2] : version (string): 1.0.0
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000007daf91dfe55fcab363416a6e3bceb3da34ff1d30
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [3] : 000000000000000000000000000000000000000000000000000000000000000b
Arg [4] : 77616c6c65742d636f7265000000000000000000000000000000000000000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [6] : 312e302e30000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.